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ABSTRACT

The report describes a data reduction technique that obtains
estimates of inertial sensor error model coefficients from a dynamic labora-
tory calibration of a typical Inertial Navigation System. The error model
coefficients are those associated with gyros, accelerometers, and their
misalignment errors that have been found by test and analysis to be the pre-
dominant sources of error affecting system accuracy. All the error terms
considered are categorized as either fixed (independent of applied accelera-
tion), first-order (proportional to the first power of acceleration), or higher-
order terms, which are proportional to the square or cube of acceleration.

In the case of the higher-order terms, the error model coefficients of inertial
grade sensors are from one to four orders of magnitude smaller than the fixed
and first-order terms. To obtain measurable quantities of these error
sources requires the application of precise high-acceleration inputs from a
laboratory test device. Until 1971, there were no laboratory test devices
that maintained a low angular-rate environment while providing precise high-
acceleration inputs to permit recovery of the high-order gyro compliance
terms. In 1971, the United States Air Force completed the 260-inch Radius
Precision Centrifuge which is located at the Central Inertial Guidance Test
Facility, Holloman AFB, New Mexico. The unique feature of this centrifuge
that permits high-acceleration testing of gyros and/or systems is that the
test specimen is located on a counter-rotating platform that isolates the
gyros from the centrifuge angular rate. Unfortunately, ac-urate estimates

of the error terms require more than a precision test device. In addition to
the test device, one must have a positively controlled test procedure that
varies the system orientation with respect to the input acceleration to provide
better observation of the error coefficients in the measurement data and a
data reduction program that provides the '""best' estimates of the error

coefficients from noisy measurement data. This report proposes a dynamic

Preceding page blank

R SR T WP PP TUppap e TR




test procedure and an associated data reduction method for obtaining .
estimates of the error model coefficients from a 260-inch Centrifuge System
Test.

The dynamic test procedure is obtained by command torquing the
platform gyros to drive the platform through a prespecified torque profile
so that each axis is subjected to the applied acceleration. Since the platform
motion is a combination of commanded rate, applied earth-rate, and drift due
to the gyro error terms, tracking the platform motion with Euler angle rates
provides the basis for the state dynamics. The measurements, obtained
from the triad of platform accelerometers, are functions of the acceler-
ometer error terms and the Euler angles, which in turn contain the drift
motion duc to the gyro error coefficients. Therefore, the problem is a
parameter estimation problem where the Euler angles and error model
coefficients are designed as systemn states to be estimated from noisy
measurements. Since both the state and nieasurement equations are non-
linear functions of the state variables, an Extended Kalman Filter is applied.

The results of two simulations verify the application of the filtering
algorithm to the calibration problem. The results show that significant
improvement can be obtained in reducing the time required to calibrate an
Inertial Navigation System. In addition, a method of applying the off-
diagonal terms of the filtering error covariance matrix provides a new

dimension in cvaluating filter performance with respect to systemn

observability.
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SECTION 1

INTRODUCTION

1.1 OBJECTIVE

The objective of the report is to develop a data reduction
technique that obtains estimates of inertial sensor error model coeffi-
cients from a dynamic laboratory calibration of a typical Inertial Navi-
gation System (INS). The error model coefficients are those associated
with the error sources that affect the ability of the inertial system to
measure accurately the velocity, position, or attitude profile of the
inertially guided vehicle. These inertial measurement errors are
represented by gyro, accelerometer, and alignment errors; they
have been found by test and analysis to be the predominant sources of
error affecting system accuracy [1,2]. Present day accuracy require-
ments for inertial navigators are so stringent that gyro and acceler-
ometer component manufacturing has reached the state-of-the-art in
material selection, production tolerances, and assembly techniques.
The cost of product improvement has become intolerable. Other than
searching for completely new developments in sensor design, the most
feasible approach to the problem is to find test and data reduction tech-
niques that accurately determine all measurable sensor error sources.
Once these errors are measured, a systems approach can be taken to
either compensate for the errors or select a system configuration or
mission profile that minimizes the effects of these errors on system

accuracy. Computational schemes in airborne computers have become

sophisticated enough to permit accurate compensation for bias and

i




scale-factor errors for each accelcrometer, provide for precision
torquing of platform gyros to compensate for ‘..cd-restraint gyro
drift, and finally to perform coordinate transiormations to account for
sensor misalignments, However, this assumes that accurate knowl-

edge of each error coefficient is available for inscrtion in the naviga-

tion software program. Gyro mass unbalance terms are usually com- .

pensated by physical adjustment of gyro-float-trim weights via a L

remote adjustment mecharnism. All the error terms discussed thus

far are categorized as either fixed (i.e., independent of acceleration)
or first-order terms (i.e., proportional to the first power of accelera-
tion); they are the only error categories where compensation techniques
are practical. Therefore, the purpose of obtaining accurate estimates
of these error model coefficients, obviously, is to directly improve
system performance through error compensation. Higher-order error . i
terms that are proportional to the square or cube of acceleration are
obtained for incorporation into system error analysis programs so that

their effects on system accuracy can be ascertained. In addition,

s

these error sources are also used in flight simulation programs to

determine the best sensor orientations, platform orientation, and mis-

sion profiles for minimizing the effects of these error sources on sys-

- e

tem performance. Therefore, the purpose of obtaining accurate esti-

mates of the higher-order error model coefficients is to provide for

g g

system accuracy determination and design optimization,

1,2 PROBLEM DESCRIPTION >

attsicanitioes.

Accurate estimates of the fixed and first-order coefficients can

.

be obtained by using present day laboratory test methods in which the
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system is precisely positioned and rotated with respect to the
earth-rate and local-gravity vectors, quantities which are accurately
determined at the test site. Sufficient measurements of the system
output are taken to permit the performance of a least-squares-
regression analysis on the measurement data with respect to a math-
ematical model of the system output. The math model is a function of
the desired error model coefficients and the applied earth-rate and
local-gravity vector components. In the case of the higher-order
error terms, the error model coefficients of inertial grade sensors
are from one to four orders of magnitude smaller than the fixed and
first-order terms. Obtaining measurable quantities of these error
sources requires the application of precise high-acceleration inputs
from the laboratory test device. Accelerometer error terms have
been obtained quite successfully since 1962, utilizing precision centri-
fuges that have the capability of applying precise acceleration over the
range of 1 to 28 g's (i.e., 28 times the magnitude of the local-gravity
vector). Gyros developed for platform stabilization systems are
specifically designed for a very low angular-rate profile. Therefore,
the centrifuge environment is not compatible with the gyro design,
since a 10- to 20-arc-seccnd misalignment of the gyro input-axis with
respect to the centrifuge rotational plane can couple enough of the
centrifuge angular rate into the gyro to completely mask the rate con-
tribution of the desired error source terms and, in some instances,
cause output saturation or destruction of the gyro bearing. Until 1971,
there were no laboratory test devices that maintained a low angular-

rate environment while providing precise high-acceleration inputs to




permit recovery of the high-order gyro compliance terms. In 1971,
after a nine-year development, the United States Air Force completed
the 260-inch radius precision centrifuge (Reference Figure 1.1), which
is located at the Central Inertial Guidance Test Facility, Holloman Air
Force Base, New Mexico [3]. The 260-inch centrifuge has the capa-
bility of testing both gyro and accelerometer inertial sensors, as well
as complete navigational systems. The unique feature of this centri-
fuge, which permits high-g acceleration testing of gyros, is that the
test specimen is on a counter-rotating platform (CRP), which isolates
the gyros from the centrifuge angular rate, since the CRP rotates at
the same rate but in opposition to the centrifuge main arm. Therefore,
under perfect counter-rotation, the azimuth of the system under test
remains fixed with respect to an earth reference frame. The accelera-
tion applied to the system is a low frequency sinusoid with a zero to
peak magnitude from 0.25 to 100 g's. The frequency of oscillation is
less than 2 Hz and should be well within the system-gimbal-servo
response so that there is no interference with the system stabilization
function. The 260-inch centrifuge provides for the first time the pre-
cise high-g environment necessary to validate and accurately estimate
for a complete navigational system the sensor error model coefficients
proportional to acceleration. Unfortunately, accurate estimates of the
error model coefficients require more than a precision test device.

In addition to the test device, one must have (a) a positively controlled
test procedure that varies the system orientation with respect to the

input acceleration to provide better cbservation of the error coefficients
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in the measurement data; (b) a data collection scheme that does not
corrupt the measurement data; and (c) a data reduction program that
provides the ''best'' estimates of the error coefficients from noisy
measurement data, The data processing problem is not considered in
this report, since it is highly dependent on the particular system
being tested and the data acquisition equipment available in the labora-
tory, The problem considered is to develop a dynamic test procedure
and an associated data reduction method for obtaining estimates of the
error model coefficients from a 260-inch centrifuge system test. The
end product of the test program is to provide a dynamic laboratory
calibraticn that identifies all the significant acceleration error

sources of the Inertial Navigation System.

1.3 PROBLEM APPROACH

The stabilization function of an Inertial Navigation System pro-
vides base motion isolation of the inner gimbal or platform where the
inertial sensors are located. Any angular motion of the base or mount-
ing frame of the INS is transmitted through the outer system gimbals
to the inner platform, where it is sensed by the triad of single-degree-
of -freedom integrating gyros. The gyro outputs are sent to the gimbal
stabilization loops, which consist of stabilization amplifiers driving
gimbal torque motors. The end result is that, through rotation of the
gimbals by the gimbal torque motors, the inner platform is driven in
such a way as to null the gyro output signals so that the inner platform

remains fixed with respect to inertial space or any other specified

bl S fhang abadingsmanic




navigational reference frame. The gyro output angular rate w, can be
represented by the following performance model:
2 2

i=(DF+Da +D.a~ +D.a.+ D a2+D a-. +D

“o ™ " Poto " “8"t " YH't oo*o " Yss?s

. +D +D tw. +w (1.1)

1010 * P1s?12s * Pos?o?s) * ¥ * “cmp

where

wqo; = output angular rate of the ith gyro
DF = fixed restraint drift
DO’ DS - mass unbalance drift coefficients

D D DOS‘ - compliance drift coefficients

i’ Poo’ Pss’ Do Drge

ay, a5, ag - applied acceleration along the gyro input, output,
and spin axes, respectively

wy = applied rate about the gyro input axis

CeMD commanded angular rate due to command torque applied
to gyro torque generator

Neglecting the commanded angular rate for now, the bracketed terms
in Eq. (1.1) cause the inner platform to drift from the navigational
reference frame, since they are not a function of input angular rate,
but are generated by error sources internal to the gyro. In fact, these

are the gyro error model coefficients that are to be identified.




Assuming that the applied rate about the gyro input axis is known, the

angular motion of the platform with respect to the base mounting frame ‘
(which is equal in magnitude but opposite in direction to the gyro output

angular rate) will be a function of the gyro error model coefficients and . g 1
the applied acceleration. The applied acceleration for a 260-inch 1
centrifuge test will be a combination of the local gravitational and

kinematic accelerations, Tracking the platform motion with respect

to a mounting frame, located on the counter-rotating platform of the

centrifuge, provides the basis for the dynamics of the system calibra- ]

tion problem. The platform 3-degrees-of-freedom motion can be f
described in terms of three Euler angle rates, Numerous laboratory
tests of inertial sensors have shown that the actual physical system
error coefficients are best described by a stochastic process whose
behavior at any given time is adequately described by a Gaussiar dis- : !
tribution [4,5,6]. Therefore, the problem is an identification or
parameter estimation problem, where the Euler angles and error
model coefficients are designated as system state variables to be esti-
mated from noisy measurements. Before discussing the measurement
dynamics, it should be noted that the accelerations in Eq. (1.1) are
defined in the sensor frame that is fixed to the inner platform; there-
fore, the accelerations will be functions of the Euler angle states.
Therefore, the evolution of the system's state with time will be a non-
lincar function of the state variables. One of the INS outputs is usually

tize integral of the accelerations sensed by the triad of accelerometers

mounted on the inner platform. Since the system output interfaces with

an airborne digital computer, the velocity is quantized into velocity
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pulses that are counted over some measurement interval. The output is

therefore the velocity change over the sample interval. This implies

R —.

that the measurement dynamic equations are discrete-time processes.
. The relationship between the system dynamics and the measurement

sequence can be seen [r- m the following model of an accelerometer

output.
o T K b Ea® s Rt Kaan (1.2) '
IND O 1 21 371 Pl P % !
1
where 1
aiND = indicated output of the ith accelerometer

K0 = bias

K1 = scale factor

KZ' K3 - nonlinear coefficients
KIP = cross-axis nonlinearity

ap ap - applied acceleration along the accelerometer input and
pendulous axes, respectively

The K-terms are the accelerometer error model coefficients to be
identified; therefore, they will be designated as state variables. The
definition of the accelerations in Eq, (1.2) in the sensor frame implies
that they will be functions of the Euler angle states. This in tu:rn

implies the following properties for the measurement sequence: (a) the

vttt i et s e

measurement dynamics will be a nonlinear function of the state vari-

ables, and (b) since the Euler angles depict the platform position at
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any point in time, the Euler angle states in the measurement

sequence contain the dynamic motion generated by the gyro error

coefficient states. Adequately representing all the error coefficient

states in the measurement sequence implies that the platform motion

must be positively controlled to orient each sensor axis with respect

to the applied acceleration, If the platform motion is limited to the .
benign motion of the random drift plus earth rate, an observability

problem could occur with some of the error states. To overcome this

problem, one must use the w term in Eq. (1.1) to drive the plat-

CMD
form through a prespecified torque profile so that each axis of the
platform is subjected to the applied acceleration. The commanded
gyro output is generated by applying a prespecified signal to the inter-
nal gyro torque generator. This dynamic test procedure permits com-
plete rotational control of the platform so that adequate representation .
of the contribution due to each error state can be obtained in the mea-
surement sequence. Since both the state and measurement dynamics
are nonlinear functions of the state variables, an extended Kalman fil-
ter will be applied to linearize the state and measurement trajectories
about the optimal filtered estimates.
This dynamic test procedure, in conjunction with the filtering
process, will provide, for the first time at the Central Inertial
Guidance Test Facility, the capability of on-line system calibrations.
The advantage of on-line data reduction is that the test procedure, the
assumed system models, and the significance of the state estimates

can be evaluated while the system is under test.

10
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1.4 SCOPE OF EFFORT

The scope of the report i: as fcllows:

(a)

(b)
(c)

Development of he system and measurement dynamic
equations for a cumplete Inertial Navigation System Cen-
trifuge Test Program. This task includes the inertial sen-
sor error model equations, the platform rate equations,
the kinematic and gravitational acceleration equations
with the corresponding centrifuge coordinate transforma-
tions, and finally the Euler rate equations for tracking the
platform motion.

Development of the extended Kalman filter equations.

Evaluation of the data reduction technique via the follow-

ing simulations:

(1) The normal centrifuge test program consists ofa 1-g
calibration in the local gravitational field prior to and
irmmediarely following the operating centrifuge test.
The purpose of this test is to determine the overall
effect of the centrifuge environment on the fixed and
first-order error coefficients, which are the major
error sources. A simulation of the 1-g calibration
program, consisting of 17 state variables, was made,
using the same techniques proposed for the operating
centrifuge test.

(2) A 10-state variable simulation was made of the centri-
fuge operating at the 10-g level to determine the ability

of the filter to identify the higher-order error

coefficients.




So that the error model coellicients 1n these simulations are
rcpresentative of an actual physical system, the Carousel VB Inertial
Measurement Unit developed by Delco Electronics was selected as the
baseline Inertial Navigation System, since it is representative of the
type of Inertial Guidance System being used in both ballistic missile
and aircraft navigation applications. The United States Air Force
sclected the Carousel VB for use in their Titan IIIC series of launch
vehicles. The Carousel IV, which is similar to the Model VB, is

presently installed in the Boeing Models 747 and 707, and McDonnell

Douglas Models DC-8 and DC-10 aircraft.




SECTION 2

SENSOR AND PLATFORM PERFORMANCE MODELS

The performance models of the gyro, the accelerometer, and
the system platform motion are developed in this section. The models
contain the error terms whose coefficients are to be identified during
the centrifuge tests. The error source terms are limited to those
associated with an acceleration environment. Error terms generated
by angular rate are neglected, since it is assumed that the angular
rate environment is limited to the benign motion of the platform with
respect to inertial space. Instances where this assumption could be
invalid will be mentioned in Section 3 with the understanding that the
performance models of this section must be expanded to include those

error terms proportional to angular rate that contribute signi{icant

error.

2.1 VECTOR AND MATRIX NOTATION

Since both vector and matrix equations will be used throughout
the report, a standardized notation will be used to distinguish
between a physical vector and a mathematical vector. A physical vec-
tor will represent some physical quantity that has both magnitude and

direction associated with it: however, its existence in space will be

independent of any coordinate frame. Since physical vectors will be

used in the application of the theorem of Coriolis, it will be necessary

to indicate the reference frame in which a vector derivative is being

taken. The notation for a physical vector will be an underlined

variable. Subscripts will indicate the relative variables for which the

PR




physical quantity is measured, and superscripts will indicate the

reference frame in which a vector derivative is being taken. For

example,
Wiy c the physical angular velocity of the b frame relative
to the i frame
é?e = the physical vector velocity of the e frame with respect

to the i frame as viewed from the reference {rame k
(i.e., the derivative is taken in the k frame)

A mathematical vector is assuciated with the three numbers or coordi-
nates that are the components of the physical vector relative to some
coordinate frame. The three coordinates representing the physical
vector form a 3 X | column matrix that will be referred to as the
mathematical vector. The notation for a mathematical vector will be
a variable that is not underlined. Subscripts will indicate the relative
variables for which the physical quantity is measured, and superscripts

will indicate the reference frame in which the vector is coordinatized.

For example,




where “ip is coordinatized in the b frame and ﬁie is coordinatized in
the k frame. The braced array {} is introduced to save space in the
written text; it should not be confused with a row matrix.

Two other notations will be used throughout the text., The first

is a direction cosine matrix, Cb' which transforms a column matrix

from frame b to frame i. For example,

(<11 <12 <43] [%x]
‘ i =B
‘ Cp B e ;e sl %y
r' [ €33 S32  C33) LT,

where cjk is the direction cosine between the jth axis in the i frame

and the kth axis in the b frame. The second notation is the skew-
symmetric, cross-product matrix. It is the matrix form of the vector
cross product [i.e., it represents the (Eie X) portion of the vector

cross product Yie X B_] and will be designated as :ollows:

- 0 _ =
wZ wY
W?k é w 0 -w
ie A X
- wY wx 0 |

where the first superscript ¢ designates the reference frame in which

the matrix elements are coordinatized, and the second superscript

designates by the letter k that the quantity represented is by definition

the 3 X 3, skew-symmetric, cross-product matrix.




2.2 GYRO PERFORMANCE MODEL
Greenwood [7] shows that, from Newton's basic law of rotational

motion, the following vector equaiion is obtained:

E=M (2.1)

[ ]
where H is the vector time rate of change of the angular momentum of

a particle about a fixed point, which is equal to the vector moment M
of the total external force applied to the particle about the same fixed
point. Equation (2.1) can be applied to z gyro to describe the dynamic
motion of the gyro element, if some simplifying assumptions are made
concerning the gyro element [8]. The gyro element consists of a spin-
ning rotor, a drive mechanism for the rotor, and the supporting gim-
bal structure as shown in Figure 2.1. The gyro element is assumed
to have the following simplifying properties that are valid for practical
applications:
(@) The rotor spins at a constant speed about an axis of
symmetry.
The center of mass of the rotor coincides with that of the
gyro clement,
(c) The gyro rotor and gimbal support structure are rigid.

Applying Eq. (2.1) to the gyro element gives

o | - M
—i,ge T =
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where

&
; = time rate of change of angular momentum of the gyro
eclement ge, with respect to the inertial reference

frame i, as viewed from the inertial frame

—i, ge
M = torque applied about the center of mass of the gyro element

Applying the first equation of Coriolis [Reference Eq. (A. 3) in Appen-

dix A] to the left-hand side of Eq. (2.2) gives

Bt fse .. x@

: (2.3)
L. S=l.ge =igge  =i,ge

The angular momentum vector of the gyro element, H. , 1s equal to

=i, ge
the vector sum of the spin angular momentum vector of the rotor, H.,
and the nonspin angular momentum of the gyro element, I—l-ns' Substi-
tuting this vector sum into the right-hand side of Eq. (2. 3) and using
the equality of Eq. (2.2) gives

M=§_§e+}'{gc+£. XH_ +w (2. 4)

; X H
—ns i, ge =s =i,ge —ns

[ )
The rotor speed is assumed constant, implying that E’S",C = 0; there-

fore, Eq. (2.4) reduces to

W . X M » Bl
= =ng —ige —s =i,ge —ns

(2.5)

Equation (2.5) is the basic law of motion of the gyroscopic element.

s ge g G -
The Eﬁq term is the source of the characteristic dynamics or

18
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transient response of the gyro element. The vector cross-product
terms contribute to the gyro's steady-state behavior.

Since most Inertial Navigation Systems employ single-degree-
of-freedom integrating (SDFI) gyros [9], an equation describing the
motion or precession of the gyro element with respect to a gyro case
axis frame will be developed for a SDFI gyro. Expressing Eq. (2. 5)
in a matrix form such that the applied torque is coordinatized in the

case or c frame, as shown in Figure 2.1, gives the following matrix

equation for the gyro element motion:

M = cS 8%+ wek c¢ pB® 4 wk c¢ pBe (2.6)
ge ns ic “ge s ic “ge "'ns ’
where

C;c = the gyro element to case transformation matrix

]

Hg: = time rate of change of nonspin angular momentum matrix
coordinatized in the moving gyro element frame

chr = skew-symmetric, cross-product matrix of the angular

velocity of the case frame relative to inertial space,
coordinatized in the case reference frame

ng, Hﬁ: - are the spin and nonspin angular momentum matrices,
respectively, both coordinatized in the ge frame

Since the gyro element motion of a SDFI gyro is constrained to pre-
cession about the output axis, an expression for the output axis torque,
Mo will be obtained from Eq. (2.6). The gyro precession angle

about the output axis (shown as Ag in Figure 2.1) is maintained well

19
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below five arc-minutes by the platform stabilization loop. Therefore

a small-angle transformation can be assumed for the gyro element to

case transformation.

[ 1 0 A
g
ct¢ =] o 1 0 (2.7)
ge
-A 0 1
L B J
Define
MS - IM., M M }
)i OA’ SRA
2.8)
wc = w w w
ic I” “OA “SRA
Therefore, by the definition of the cross-product matrix
a "“SRA  “0a]
wek b, 0 i (2.9)
ic SRA I ¥
L~ “0A Wy e
Now
18€ _
I{s = {O, 0, Hs}
ge
i {wx, wy wz} (2. 10)

ngz{l w,Iw,Iw}
ns b . Y 'z "=

20
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where

I, I, I - are the principal moments of inertia about the ge
¥ ¥V % axes

An expression for obtaining the angular velocities of the ge frame is

wge :Cge UC g wge

i, ge c ic c,ge (2.11)

where

€
o
0
1]
g,
o
e
[t o]
o
v
=
(¢
-l
[4°]
o]
(]
o
(2]
o]
’11
e
)0}
c
-t
(o]
o
o

C;c is a direction-cosine matrix, implying that it 1s an orthogonal
matrix [7]; therefore, its inverse is equal to its transpose. Substitut-
ing the appropriate matrices from Eqs. (2.7), (2.8), and (2.10) into

Eq. (2.11) gives the following set of equations for the ge frame angu-

lar velocities:




Therefore, from Eq. (2.10),

1 () - Ay Yapa)
ge ab 2
HEC Iy(uOA " Ag) (2.13)
-Iz(wSRA v Ag wI)J

and the transient response is represented by

sge °
Moo = [ L@op + AY) (2.14)

Equations (2.7) through (2. 14) define all the terms of Eq. (2.6) to per-

mit a solution for the output axis torque.

+ 00, A = B . 4

OA”ywOA y B s I o

s “SRA g
(2.15)

2 2
<l =Ry ey vapa - Byter - oggad Uy 1)

The outpu* axis torque MOA and the time constant v_ for a SDFI gyro

are, by the design characteristics of the gyro, equal to the following:

M =M -C(

OA tg

l/.\ + (u) M
K

(2.16)




where

Mtg = torque applied by the gyro torque generator

Cd = viscous damping torque coefficient

(u)M = uncertainty torque caused by internal gyro error
sources

Substituting Eq. (2.16) into Eq. (2.15) and rearranging the terms gives

-

the dynamic equation of motion for a SDFI gyro.

-

H M H
o E . 3 tg  (uiM s 3 .
TgAg+Ag-c wI+ C +C C wSRAAg TngA
d d d d
(2.17)
L = 1.9 A
Z X 2 2
e 1wt g (f -wgra) I, - 1)

Except for the first three terms, all the remaining terms on the
right-hand side of Eq. (2.17) are undesirable cross-coupling terms.
The significance of these terms should be evaluated using the specific
design characteristics of the SDFI gyro in conjunction with the expected
values of the external parameters generated by the operating environ-
ment., Gyro operation in a platform mode involves the rotational sta-
bilization of the gimbaled platform upon which the gyros are mounted.
If the platform is stabilized in the inertial frame of reference, then the
last four terms or the right-hand side of Eq. (2.17) can be neglected,

since an inertial frame mechanization subjects the gyros to the most

benign rotational environment possible. In addition, the time constant, |

T_, of a platform type gyro is made very small by decreasing the output
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axis moment of inertia Iy and increasing the viscous damping
coefficient Cd' Making the time constant small minimizes the effects
of the transient responsc terms (Tg Xg and o &OA) on the loop per-
formance. Those terms involving the product of the output precession
angle Ag are further reduced, since the high-gain platform stabiliza-
tion loop maintains Ag essentially at null (less than one arc-minute).
As discussed in Section 1.3, the platform calibration program
employs a dynamic test procedure in which the gyros are command
torqued to drive the platform through a prespecified rotational pro-
file. This implies that an inertially rotating reference frame is being
instrumented during the test program; therefore, the effects due to
the cross-coupling terms must be evaluated to determine if any of the
last four terms should be included in the final version of the gyro per-

formance model. Rewritin,; Eq. (2.17) in an alternate form yields:

& C
_d 2 +u. cu +tw t (u) A < .
H, "¢ %7 Y0701 Yo T Yera Ny " B g P
(2.18)
(I -1.) A
z ~ 'x 2,2
p B R £ : -
Hy “rvsra*®_©“1-“sral @ 1
where
Cd :
By = T Ag = output angular rate of the gyro
S

oy applied rate about the gyro input axis

CMD = commanded angular rate

3
Az
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(u)wD - UM error drift generated by internal gyro error
8 sources

A comparison of the magnitude of the cross-coupling terms versus the

first three terms on the right-hand side of Eq. (2.18) is given below.
The given parameters are based on the design characteristics of the
! Carousel VB Inertial Measurement Unit SDFI gyros [10], and the

angular rate and acceleration values are from a computer simulation
of the platforui rotational profile that was generated in support of the

: data reduction evaluation described in Section 1.4, Given:

Ag = { arc-minute

Cy = 62,500 gm-cmz/sec

5 2
Hg =1 X 107 gm-cm™/sec

Tg = 2 milliseconds

w; = 5.4 % lO-4 rad/sec

1
w * g X 10_4 rad/sec
SRA i
o | -8 2
uOA-3.2 > 10 rad/sec

2
| - = s
] I [ 10 gm-cm

The magnitudes of the terms in Eq. (2.18) are:

wit wepmp * (ll)u)l) =6,0 X 10'4 rad/sec

WSR A Ag - 14.5 X 10°-8 rad/sec

25




C
I—d rodop © 4:0 X 10~ 1L pat/uee
s B
(I -1)
z X -11
—— W 27 e (8 S () rad/sec
HS I"SRA
A
g, 2 2 ] -15
% (uI-wSRA) (IZ-Ix)-l.ZXIO rad/sec

A comparison shows that the cross-coupling terms can be neglected.
Since 7 is small, the transient response can also be neglected; there-

fore, Eq. (2.18) reduces to the following steady-state equation:

t (u) w (2.19)

wo “wrtwceMmp D
As was shown in Eq. (1.1) of Chapter 1, the error drift term, (u)wD,
1s equal to the sum of the drift-producing error sources internal to

the gyro. Therefore, from Eq. (1.1), the gyro performance model

equation 18

2 2 2
we (DF+DIaI +DOaO+DSaS+DIIaI +DOOaO+DSSaS
(2.20)
tDigajag t Digajag + Dyg ag ag) +wy +weyp

As previously mentioned, the gyro error sources considered are
limited to those normally found when subjecting the gyro to an acceler-
ation environment. The error term expansion in Eq. (2.20) contains
those terms that have been found, by numerous tests conducted at the

Central Inertial Guidance Test Facility, to be the predominant sources
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of error. Wrigley [8], Taylor [11], and Lorenzini [12] have excellent
descriptions of the physical properties in the gyro that generate the

error drifts.

2.3 ACCELEROMETER PERFORMANCE MODEL

The accelerometer considered in this study is a force-rebalance
pendulous type device, which can be represented in the simplified
form of FFigure 2.2. Based on the hehavior of a simple pendulum
under the influence of pivot acceleration, the acceleration force acting
on the center of gravity of the pendulum will cause the pendulum to
accelerate in the direction of the force and, in addition, cause a
moment to be applied about the pivot, which imparts an angular accel-
eration to the pendulum. The rotation of the pendulum about the pivot
18 represented by the angle about the output axis AO in Figure 2.2,
The force-rebalance feature of the accelerometer is normally feed-
back current flowing through a forcer coil, which is mounted on the
pendulous element, reacting with a permanent magnet to drive the
pendulum back to its null position. With an acceleration applied to

the input axis, the moment about the output axis, MOA’ is as follows:

M =Rl m a._ |l ma, l cos A

OA 4 ¥ Iy I O b i)

where

Fa = acceleration force

a) = acceleration applied to the input axis
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1 - length of the pendulum of mass m

ly =1 cos AO = effective length of the pendulum with respect

to I
a

Based onthe design characteristics of a force-rebalance accelerometer,

MOA is also represented by:

= moment of inertia of the pendulurn about the pivot or
output axis

Cd = viscous damping coefficient

k = spring or clastance coefficient of the pivot hinge

(u)M = uncertainty torque due to internal error sources of the
accelerometer

Because of the high-gain rebalance loop, AO is maintained essentially
at null. Therefore, using a small angle approximation for AO fio @

cos Ao = 1) and equating Eqs. (2.21) and (2. 22) gives

I ©
Pw , 41 _ ol u)M
PP Mot he "z Mt E (e &3}

Comparing the left-hand side of Eq. (2.23) with the standard form of

a second-order transient solution



e

=l

5
o =
>e
@)
O

+ A

=2\
=

shows that

By = Nk Tfp- = undamped natural frequency

4

{ = 2 \’F—I; = damping ratio

and therefore the accelerometer time constant, T is

<

Typical values are: Iy = 7.06 gm-cm2 and C, = 47,000 gm-cmzlsec,
which gives a value of 0. 3 milliseconds for L Neglecting the tran-

sient response gives the following steady-state equation:

a a

+ (u)a (2.24)

IND I

where

IND = 1 AO = indicated output of the accelerometer

u)M . : 3 :
(u)a = (—)1— = uncertainty in acccleration due to internal error
sources




Reference Eq. (1.2); the uncertainty term, (u)a, is equal to the sum
of the accelerat.on error sources:
a:Kn+ (WK, a,+K, a® + K, a5 + K (2.25)
(w)a o (u {3 2 2 3 g IP 21 %p o
Substituting Eq. (2.25) into Eq. (2.24) gives the accelerometer per-
formance model equation:
(2.26)

= K VN, @

2 3
a[i\‘D o { I+K2aI+K3a + K FYLE

I P 1P

where

K (B (u)Kl)

t

(u)K1 uncertainty in the accelerometer scale factor

As was the case with the gyro performance model, the accelerometer
error sources considered are limited to those normally found when

the accelerometer is subjected to an acceleration environment. The

cross-axis term KIP ay ap is to account for the case where an accel-
eration applied along the pendulous axis causes an additional moment
about the pivot; the additional moment occurs because of the moment-
arm generated by the offset of the pendutum, which was caused by the
simultaneous application of a; along the inpu* axis. Obviously, the

cross-axis contribution is small since the offset of the pendulum is

the angle AO’ which is maintained very small to prevent the coupling

effect,




2.4 PLATFORM PERFORMANCE MODELS

Based on the discussion in Section 1.3, one may derive two
requirements for platform performance information. The first
requirement is to obtain an expression of the platform rate with
respect to some laboratory reference frame, in order to establish
the system dynamic equations, which track the platform motion. The
second requirement is to obtain an expression for the output of the
platform accelerometers, which formulates the measurement dynam-
ics and provides the basis for the measurement sequence.

The platform provides the stabilization or base motion isolation
function, implying that a vector representation of the platform rate is
essentially equal in magnitude but opposite in direction to the gyro

output angular rate, we-

&+

o w (2.27)

SERVO

where
e © angular rate of the platform frame p with respect to the
P platform base or mounting fixture frame r, which is the
selected laboratory reference frame
b 9 SERVO uncertainty in platform rate due to the stabiliza-

tion loop servo error
From Eq. (2.19), Eq. (2.27) is also equal to
(2.28)

Wpp T "9 "@oyp " Mep t Lugpryo
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A matrix equation of the platform rate coordinatized in the platform
reference frame requires a clear understanding of the vectors given
on the right-hand side of Eq. (2.28). W is the angular rate sensed by
the gyro about its input axis. The motion sensed by the gyro is identi-
cal to the motion of the inner gimbal platform where the gyro 1s
mounted. However, the motion of the inner gimbal is identical to the
motion of the system platform base or mounting fixture, since the outer
gimbals of the system platform transmit the base motion directly to
the inner gimbal. Therefore, the angular rate sensed by the gyro is
identical to the angular rate of the base with respect to inertial space,

w So, coordinatizing wyin the base frame r gives the following

ir’
matrix equation for the applied rate about the gyro input axis.
r r
3 o

Wi Cwio (2.29)
The comimanded angular rate, CEMD? and the error drift rate, (u)wD,
are hoth generated by sources internal to the gyro. They represent |
motiun of the gyro element with respect to the gyro case as generated
by command and uncertainty torquing. The gyro element axes, shown
in Figure 2.1, will be defined as the gyro sensor axis frame s. The
gyro case input axis will be considered identical to the direction of the

inner gimbal platform axis for that gyro. In other words, the X, Y,

and Z gyro case input axes establish the direction of the x, y, and 2

inner gimbal platform axes which will be known as the p frame.




Therefore, the matrix ecquations for the command angular rate and the

error drift rate, both coordinatized in the p frame, are:

P p 3
“cMp s “cmp
(2. 30)
P _p 5
e 7 T “D
where
wZMD - 4 matrix of commanded angular rates in the sensor

frame

s ; ’ ;
Wp - @ matrix of error drift rates in the sensor frame

CE ~ transformation matrix

from the sensor frame to the
platform frame

Combining Eqs. (2.28) through (2. 30) gives the matrix equation for

the platform rate in the platform frame as

% 2p.]

xp

P pl.s s]_cP.T . p

“rp “[“yp [ - Co [‘*’CMD“"D] “rYir * @SErvo  (2.31)
.QZpJ

The first matrix expression on the right-hand side of Eq. (2. 31)

actually represents the combined contribution of the Xo Y, ‘and %

gyros. Therefore, Eq. (2. 31) can be rewritten as
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-prr

P SGZ SGZ p
= &3 [ r “ir T YSERVO

sGz |“cmp T 9D

Cng (j =X, Y, Z) are the coordinate transformations from the gyro
sensor axes to the platforin frame. These transformations will be
defined in Section 3. Cr: is the transformation from the platform bhase
to the inner platform p frame and will be defined in Section 4. Equa-
tion (2.20) represents the performance model for all three gyros;
therefore, kq. (2.32) can be expanded to incorporate all the terms
from Eq. (2.20) for each gyro. The final form of the platform rate

performance model matrix equation is:




X gX FY
t] o 0 offo -CEGY 0
o 0 offo 0
Py Doy Dgy][ary Dy DPooy Pssy] [afy :
+| o 0 0 |lagy[+]| o 0 0 aéY -
0 0 0 Jlag, 0 0 0 agy
Proy Pisy Posy|[21y 20y] [0 TSFy 01 ’
+ 0 0 0 aIY aSY +1]0 0 0 th
0 0 0 agy aSYJ 0 0 0 0 )
(2.33)
Przl |Piz DPoz Dsz] [z it
-chZ 0o {+| o 0 0 a5,
0 0 0 OJ agy :
D1z Pooz Pssz] [t
+ 0 0 0 aéz
0 0 0 _aéz
:
Proz Pisz Posz] [21z 207] [0 © TSF,[ o
t 0 0 0 ar, agy |+ 0 0 0 0
0 0 o Jlag, ag,llo o o b
- €} wip * wEprvo
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where

a.., o

I X, Y., 7Z) - arc the applied accelerations along

the gyro input, output, and spin
axes respectively (these will be
defined in Section 3)

oj’ -'lsj(,l

TSFj(j - X, Y, Z) - are the internal gyro torquer scale factors

tgj(j =X, Y, Z) - are the gyro command to-que values

Therefore,

'I’SFj .t jth commanded angular rate

g “’CMDJ.
To simplify the measureiment equation, the indicated acceleration of
the inner gimbal platform will be defined in the accelerometer sensor
frames. Applying the accelerometer performance model equation,

Eq. (2.26), to all three platform accelerometers, the platform indi-

cated acceleration performance model is:

Ay i T S O T} 21ax
S
Amnp | Ay RKovf*} © Kyg 0 Hiopiy
A, Koz ‘ 0 Ky, dlap,.,
(2. 34)
.
e 0 I'JIAX
+ 0 KZY 0 'j‘lAY
2
4 0 Ky dlag.,
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[V 0 " Y[ *ax
10 Ky 0 |af,y
0 0 Rypllad .

(2. 34)
[Kpx 0 \ laxX  ?px i
Y By O Ay 2py
- 0 0 Kipzd L2jaz  2py

where

apj(j =X, Y, Z) - are the applied accelerations along the

IAj :
accelerometer input and pendulous
axes respectively (these will be defined
in Section 3)

We now have all the performance models necessary to define the state
and measurement dynamics of the calibration problem. In the next
section, the applied sensor acceleration with respect to inertial space

will be developed.
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SECTION 3

APPLIED ACCELERATION

The acceleration that is applied to the inertial sensor axis

frames is developed in this section. Since the major portion of the

- applied acceleration is due to the kinematic motion of the centrifuge,
a description of the centrifuge and the various coordinate transforma-

tions required to describe the motion will be defined.

3.1 DESCRIPTION OF THE 260-INCH CENTRIFUGE

The 260-inch radius precision centrifuge, shown in the cutaway

Lal MR S

view of Figure 1.1, is enclosed in a building 90 feet in diameter [3].

The main arm is a steel weldment formed by two double-edge beams

tied together by trusses to form a single beam, The arm is totally
enclosed in a cylindrically shaped aerodynamic shroud (referred to as
the dynamic cylinder in Figure 1, 1), 50 feet in diameter and 11 feet
high, that rotates with the arm. The aerodynamic shroud is enclosed
in a smooth-walled, stationary cylinder to reduce drag. Chilled-water
cooling plates located at the top and bottom of the stationary wall re-
duce the temperature rise between the shroud and the stationary wall
due to aerodynamic heating. The main spindle, which is 4 feet in
diameter, is supported by upper and lower hydrostatic oil bearings,
The lower bearing supports the entire weight of the rotating cylinder,
consisting of the main arm structure and shroud, which is approxi-
mately 45 tons. Mounted just below the upper bearing are two drive
motors: a 400-horsepower induction motor to accelerate the arm

and a 175-horsepower synchronous motor for constant rate drive.
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The speed of the main arm is continuously variable to attain accelera-
tion levels from 0,25 to 100 g's by means of a frequency divider with
a vernier control and a precision frequency source. The frequency
divider provides the reference signal to stabilize the synchronous
motor after the induction motor has driven the main arm up to the
selected speed. Speed variations of the synchronous drive system are
further reduced by damping in the centrifuge feedback stabilization
loop. Angular velocity errors, averaged over a 50-second time
period, have been measured at less than 3 micro-radians per second.

The cenirifuge arm is statically balanced at rest by counter-
weights placed on the opposite end of the arm from the counter-rotating
platform. Dynamic balance is aghieved during operation by motor-
driven weights located on the arm structure. The motor-driven weight
locations are changed until the output of proximity detectors, located
in the upper and lower bearings, are equalized. Equalization of the
detector outputr implies that a dynamic balance has been achieved,
since the main gpindle rotational axis will be centered in the hydro-
static bearing housings, which were aligned to the local vertical during
installation, The main spindle verticality is adjustable during the
static balance procedure to { arc-second using the output of the prox-
imity detectors; changes in verticality during operation are measurable
to 0.2 arc-second using the detectors.

The centrifuge radius is also measured statically and dynam-
ically., The static radius is measured to an accuracy of 2 par.s per

million of the 260-inch radius by a micrometer consisting of three

calibrated Invar rods and a precision stepper .notor. The motor

Lo

T
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drives the rods to abut the main and CRP spindles, thereby measuring
the desired distance between the center of the centrifuge and the center
of the CRP. The change in radius or stretch of the arm due to
g-loading and aerodynamic heating is measured to an accuracy of
{ part per million by determining the capacitance between two plates
that are part of a capacitance bridge network., One plate is attached
to a probe that is fixed to the CRP spindle, which rotates with the arm;
the other is a movable plate that is attached to the stationary wall.
During centrifuge operation, the stationary wall plate is moved out-
ward to bring it in close proximity with the plate attached to the rotat-
ing arm; the value of capacitance between the plates and any change in
capacitance are proportional to the distance and change in distance
between the plates, which in turn provide the dynamic radius mea-
surement. The stretch at both the top and bottom of the centrifuge
arm is measured to detect arm droop or rise caused by unequal
g-loading or heating of the upper and lower arm structure. There are
three pairs of dynamic radius-measuring stations, equally spaced
around the stationary wall, to separate a change in radius from a dis-
placement of the main spindle.

The CRP is a cylinder, 50 inches in diameter and 50 inches high,
that will support a 30, 000-g-1b load (i.e., a 300-1b load at 100 g's).
The CRP spindle is also supported by hydrostatic oil bearings; there-
fore, procedures similar to those used for the main spindle permit the
CRP spindle to be adjusted within 5 arc-seconds of vertical with an

accuracy of 0,2 arc-second when the centrifuge is at rest, and changes

in verticality are measurable to 2 arc-seconds during operation. The




CRP drive system is a phase-lock position scrvo that utilizes an error
signal to maintain synchronous counter-rotation, The error signal is
obtained either from a pair of identical 16-pole resolvers, one mounted
on the main spindle and the other on the CRP spindle, or from a pair
of 720-tooth gears similarly mounted. The error signal is amplified
to drive two induction motors on the CRP. Power and instrumentation
signals are transferred to and from the main centrifuge arm and CRP
via silver brush and slip ring assemblies mounted on the spindles.

A simplified example of the acceleration applied to the system
platform axes during centrifuge operation in the counter-rotating mode
is shown in Figure 3.1, The simplifying assumptions of this example

are as follows:

(a)
(b)

(c)
(d)
(e)

Perfect counter-rotation of the CRP is assumed.

The system platform error drift and gyro command rate
are zero.

The system stabilization function is assumed to be perfect,
Earth rate is assumed to be zero.

The acceleration applied to the platform axes is limited to

the centripetal acceleration of the centrifuge.
The example shows that the acceleration along the platform axes in the
rotational plane is a sinusoid with a zero-to-peak magnitude equal to
the centripetal acceleration. The angular rate range of the centrifuge
is 0, 609 rad/sec at 0,25 g's to 12,176 rad/sec at 100 g's, based on a
radius of 260 inches and a local-gravity magnitude of 32, 1238 ft/secz.

The frequency range associated with the preceding angular rates is

e
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0.097 to 1.938 Hz; therefore, as previously mentioned, the accelera-

tion applied to the system is a low frequency sinusoid,

3.2 COORDINATE TRANSFORMATIONS
The basic coordinate frames represented in the major trans-

formations linking inertial space to the sensor axes are:

I - Inertial frame

E - Earth frame

C - Centrifuge main arm frame

- Centrifuge counter -rotating platform frame

System inner gimbal platform frame

@ e
1

- Sensor frame

All coordinate frames will be considered right-hand orthogonal axis

sets,
3,21 Inertial - Earth Transformation
The inertial frame is defined at the center of the earth
and is nonrotating with respect to the 'fixed stars''. The X.l and Yi

axes lie in the equatorial plane and the Zi axis is coincident with the
earth's angular velocity vector, Eie' As illustrated in Figure 3.2,
the Xi axis intersects the local meridian at the initial calibration time
(i.e., when t = 0)., The earth frame, reference Figure 3.2, isa
tangent frame that is fixed on the rotating earth, with its origin at the
intersection of the geographic latitude I., and the local meridian at a

point on the earth's surface corresponding to the location of the center
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of the centrifuge main spindle. The axes are aligned with the cast,
north, and up directions. The up axis, 7.0, is defined to be coincident
with the local vertical. Since the best physical measure of the local
vertical is the local-gravity vector g, the local vertical is considered
coincident with the local-gravity vector and any deviations of g ciused
by mass anomalies are assumed negligible [13]. The north axis Ye
is in the direction of the projection of the carth's inertial angular
velocity vector into the local horizontal plane. The east axis Xe
completes the right-hand orthogonal set and also lies in the local
horizontal plane.

From Figure 3.2, the inertial-earth coordinate trans-

formation matrix is

@ { ®
Cie = | -sin L 0 ‘cos L (3.1)
L cos L 0 sin L ]

The matrix representation of the rotation of the earth frame with re-

spect to the inertial {rame, coordinatized in the carth's axes, is

e 4
il {o, w., cos IL, w., sin L} (3.2)
where
w, =17.292116 % 10'5 rad/scc = the scalar value of earth rate

1C

L =32° 53' 26, 614" = geographic latitude of the centrifuge




— -

Defining:

WES = o, _ sin L = 3.95990552 x 10°5 rad/sec
WEC = w_, cos L = 61232531 X 1072 rad/sec

The cross-product matrix form is

F 0 -WES WEC 7]
wf(l‘: WES 0 0 (3.3)
| -WEC 0 o |

The scalar distance between the coordinate frames, R‘ie' remains
constant and is equal to the earth's radius.

Before describing the next transformation, it should be
noted from Figure 3.2 that the local-gravity vector has been shown as
acting outward from the earth, rather than inward. This convention is
used in the guidance test field because of the concept of acceleration
as measured by an accelerometer whose case is fixed on the platform,
and the platform is mounted on the test device. Consider the simple
linear accelerometer, at rest on a spherical homogeneous nonrotating
earth, illustrated in Figure 3.3. The accelerometer input axis is
parallel to the earth radius vector Bie' and a positive output accelera-
tion corresponds to a positive displacement of the accelerometer's
seismic mass, Since the case of the accelerometer is fixed, the mass
attraction force of the earth F, actson the seismic mass of the

accelerometer. The seismic mass is displaced until the restoring
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force of the spring equals the mass attraction force. Because of the
positive mass displacement, the accelerometer will indicate a positive

acceleration output of (Reference Figure 3, 3):

G M, F,
s 2. "% T2 "lp = (3.4)
ie Rie ie

The second component of the local-gravity vector is due
to the centripetal acceleration generated by earth's rotation,
w. X(w. XR, ), illustrated in Figure 3.4. The specific force f ,
e =i s =
acting on a unit seismic mass, is equal in magnitude, but opposite in
direction, to the centripetal acceleration, The total force acting on
the seismic element is the vector addition =, Ee and f—e' causing a

positive displacement, which, in turn, is interpreted by the acceler-

ometer as a positive acceleration, Therefore, by convention, the

local-gravity vector is defined as acting outward from the earth and is

equal to the following vector equation:

2,718, "0 *ix, 2 bl
ie R.

3.2,2 Earth-Centrifuge Main Arm Transformation

A number of intermediate transformations are required
to go from the earth tangent axes to the centrifuge main arm axes [14].

The first intermediate transformation shown in Figure 2.5 accounts

for any variation of the centrifuge main spindle from the local vertical.

il
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A tilt off of the east direction, caused by an east-west bearing deflec -
tion, is represented by the angle ¢YC; a tilt of the north direction,
caused by a north-south bearing deflection, is represented by the angle

¢

- As discussed in Section 3.1, the main spindle verticality should
be within a few arc-seconds, so that the following small angle trans-
formation can be used to depict the earth frame e te misaligned spindle

axis frame ¢’ transformation.

B 0 -q»yc

(.

Ce =il 0 1 ¢xc (3.6)
.._(pYC -¢XC : =

The second intermediate transformation shown in
Figure 3.5 is required to establish a physical time reference during
the calibration program. One of the dynamic radius-measuring stations
discussed in Section 3.1 is used to provide a pulse per revolution of
the centrifuge. The electronic pulse is used to secure an initial condi-
tion (t = 0) time reference and to determine the average centrifuge
angular rate by measuring the time between pulses. The 1-pulse-per-
revolution axis frame is defined with the prr axis coincident with the
centrifuge spindle, the prr axis directed toward the pulse-per-
revolution station, and the Yppr axis completes the orthogonal set.
From Figure 3.5, the transformation from the misaligned spindle

axis frame to the pulse-per-revolution frame is
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cos ¢ sin ¢, 0
PpPT J
Cc' = |-sing,_ cos ¢ 0 (3.7)
0 0 1 .J
where
ol ¢ppr
¢ =z

opr astronomic heading of the {-pulse-per-revolution (ppr)

station with respect to north

The astronomic heading [13] is by definition the clockwise angle mea-
sured from north to the pulse-per-revolution station.

The last intermediate transformation shown in Figure 3.5
transforms the ppr axis frame into the centrifuge main arm frame.
The main arm frame is defined with the Zc axis along the centrifuge
spindle, the XC axis directed outward along the centerline of the main
arm and through the center of the counter-rotating platform, and the

Yc axis completes the orthogonal set. The transformation is

cos ¢ sin ¢ 0 |
8 .
Cppr = | -sin ¢ cos ¢ 0
0 0 i o
53
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where

co

Sw

formation

where

11

12

13

:¢C+¢O

- angle from 1 -pulse-per-revolution contact to main arm

centerline through center of CRP att = 0
= ft w_dt
c
0

zw _ +ow
co c

= average centrifuge angular rate

= centrifuge rate variation about the average rate caused by

variations in the main arm drive system

Equations (3, 6) through (3. 8) give the following trans-

for the earth-to-centrifuge main arm frame.

-
“11 €12 ')
€ _ af ppr ~c’
Ce . Cppr Cc’ Ce €21 €22 €23 il
L ©31 €32 “$% 3

= CcOSs ¢ cos - sin sin
¢ e ¢ ¢zc

= cOS 0 sin + sin ¢ cos
¢ ¢zc ® ¢zc

-

-cos i
(S ¢ cos ¢zc ° ¢yc + cos ¢ sin ¢zc . ¢xc

P 1 "
sin ¢ sin ¢zc . ¢yc + sin ¢ cos ¢zc . ¢xc
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The matrix

to the earth frame,

Therefore,

= -sin ¢ cos ¢zc - COs ¢ sin ¢zc

-8in ¢ sin g‘)z(‘ + cos ¢ cos ¢7c

sin ¢ cos ) - sin ¢ sin
¢ ¢zc° ('yc ¢ ¢zc° ¢xc

+ cos ¢ sin q’zc o ¢yc + cos ¢ cos ¢zc' ]

Xc

Pye

-¢

Xc

representation of the rotation of the centrifuge with respect

coordinatized in the centrifuge axes, is

c
e = {0, o, wc} (3.10)
the cross-product matrix is
0 -w 0]
¢
wiole 0 g (3. 11)
ec c
Lo 0 0 J

Since the origins of the earth and centrifuge main arm frame are the

same, the scalar distance R =0,

ecC
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3.2.3 Centrifuge Main Arm - Centrifuge Counter -Rotating

Platform Transformation

Two intermediate transformations are required to link
the centrifuge main arm frame to the centrifuge counter -rotating plat-
form frame. The first transformation shown in Figure 3. 6 accounts
for any variation of the CRP spindle axis with respect to the centrifuge
main arm axes. In other words, it accounts for misalignments that
exist between the main spindle and CRP spindle, since the centrifuge
main arm vertical axis is coincident with the main spindle axis. The
angles L and eyr represent static as well as dynamic misalignments
due to g-loading. Since both the main and CRP spindle verticality are
within a few arc-seconds, the misalignment between the two spindles
should be within a few arc-seconds. Consequently, the following small
angle transformation can be used to depict the centrifuge main arm

frame to misaligned CRP spindle axis frame r’ transformation.

= =
i 0 -0
yr
.rl
et =] ® { 9 (3.12)
c xr
9yr -Oxr i if

The last transformation shown in Figure 3. 6 transforms

the misaligned CRP spindle axes into the CRP axis frame r,

[~ cos @ -sin © 0 T

G, = sin 0 cos 0 0 (3.13)
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whe re

W
r

dw
r

where

=0_+0
r o

1]

0

= CRP angular rate = PN 6wr

angle between X_and X axes att = 0
r c

ftwrdt

E 6wc + éwr [Reference Eq. (3. 8).]

= CRP rate uncertainty caused bv variations in the

CRP drive system

Equations (3.12) and (3. 13) give the total transformation:

= Ccos O
= -8in O

= -cos O ep
yr

sin O

cos 0O

-sin @ e ¢ + cos eq
yr X

- sinfBeg@

-
€11 €12
€21 €22
31 €32
Xr

r

13

23

€33 |

(3.14)




€31 0yr
532 -Oxr
Cqq ~ 1

The rotational and cross-product matrices are

r
Wy {0, o, -wr} (3.15)
0 w 0 ]
r
LI (I 0 0
et i
L "

The scalar distance between the coordinate frames is

R -r +6r (3.16)
cr o

where

B, nominal 260-inch radius

6r = static and dynamic change in the radius from nominal

Measurements of the centrifuge radius have shown that, once the
centrifuge is stabilized at a specified g-level, the dynamic change in
radius or stretch remains constant, implying that the change is mainly
due to g-loading, rather than aerodynamic heating. Consequently,

Rcr can be considered a constant at each g-level.
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As mentioned in bection 1, the purpose of the counter-
rotating platform 1s to isojate the platform gyros from the centrifuge

angular rate. Perfect isolation implies perfect counter-rotation;

however, the transformations of this section reveal that misalignment
between the two spindles and/or variations in either the main or CRP
drive system prevent perfect counter-rotation. Therefore, a component
of centrifuge rate will be sensed by the platform gyros. If the magni-
tude of angular rate is large enough to stimulate instrument error
terms proportional to rate, then the models of Section 2 must be ex-
panded to include those effects. Measurement data taken thus far on
the centrifuge environment shows that expansion of the performance
models is not necessary, However, the component of centrifuge rate

i1s large enough to mask the drift-producing terms contained in

Eq. (2.20). As shown by Thede [14], a CRP axis misalignment of )
5 arc-seconds gives a component of centrifuge rate equal to 9. 48 % 10"8
rad/sec at the 10-g operating level of the centrifuge. This compares to
8

a nominal value of a gyro compliance term (such as Du) of 23,7 x 10~

rad/sec. The centrifuge rate that is sensed by the platform gyros,

whose outputs drive the platform via the stabilization loops to null the
sensed rate, must be accounted for to distinguish between the platform
motion due to sensed centrifuge rate and motion due to the drift terms.

The term in the platform rate equation, Eq. (2.33), that accounts for

3 ! ¥
the centrifuge rate effect is w




R w,
ir e 1e cC ec cr

(3.17)

|
3
Q

w,
€ 1@ (S

So the variations in the main and CRP drive system are represented,
and the misalignments are contained in the CZ transformation given by
Eq. (3.14). The important point is that the misalignments and rate
variations must be measured quantities. If the measurement accuracy
is not sufficient to accurately account for the centrifuge rate effect,
then these parameters must also be estimated by the filtering process.

The Inertial Navigation System will be mounted on a
fixture located on the CRP. Since the mounting fixture is aligned and
leveled by extremely accurate laboratory optical equipment, the
mounting fixture or system platform base frame will be made coincident
with the CRP frame. Therefore, the transformation from the centifuge
CRP frame to the system inner gimbal platform frame will be identical
to the platform base to inner platform p frame, CE. which will be

defined in Section 4.

3.2.4 System Inner Gimbal Platform-Sensor Transformation

The system inner platform axes are defined by three
fiducial lines that are physically inscribed on the platform. The

inertial instruments also have a case axis system which is physically
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inscribed on the case and referenced to a precision mounting surface.
The instruments are mounted so that the case input axes are aligned
with the platform inscribed axes. In other words, the X, Y, and Z
gyro case input axes c¢stablish the direction of the inner platform axes.
The instruments are located as close as is physically possible to the
origin of the platform frame and are distributed about the origin to
maintain a balanced inner gimbal. The accelerometer and gyro case
axis system for the Carousel VB [10] are illustrated in Figures 3.7

and 3.8, respectively. Therefore., the locations of the instruments are

Rg e & 1, 0, -2) (X -gyro)
RP -1, M, =2 Y-
p, GY {-1, 0, } (Y-gyro)
Rg ag = {0 -3 1.5) (Z-gyro)
(3.18)
Rg ax - {0, -1, -2) (X -accelerometer)
Rg AY {o, t, -2} (Y-accelerometer)

Rg = g, £.5, 1.5} (Z-accelerometer)

The true sensitive or input axis of an accelerometer is
based on the physical structure of the output axis and pendulous ele -
ment. © The true input axis will be misaligned wit: respect to the case
axes, The sensor frames are defined by the true input axes. Fig-
ure 3.9 illustrates the inner platform-to-sensor transformations for

the X, Y, and Z accelerometers,

62




Wiashg s1Xy 98eD 19)9W0IA[2DY 4 g aunfi g

130V - A vd

v 1320V - X
! e vd :
vo | .a/*\\._
I
a _ " .
|
A | |
| _
| _
I _ 3
| :
I
|
_
|
_
|
|
vd :
L |
1320V - 2
YO ‘
vi d,
E
9




Z - GYRO P
IA i
1-5
| SA

OA |

|

I

|

|

|

-2th_‘- -I
H""‘-.__. ‘_‘_..f'#

LT pp— [S—. |

IA
OA
Y - GYRO

— i ———— ———
n

]

o

—;>
o
>

o
>

X - GYRO

Figure 3.8. Gyro Case Axis System

64




SOWEBI { 31eUlpIO0) I3)J3WO0II[3IDY - wIojreld *6°¢ 2andr g

ANINNOITVSIN 1
3ANVId-NI - “¢

ANIANOITVSIN o,
INVId-40-1Nn0O - 7

SIXV 1NdinoO - vO
SIXY SNOINAN3d - vd

:aN3931
(vd) 24
ona
(vo) >z
SIXY 1NdNI _
JNyL L u%

JNVY4 JLVNIGYOO0D 3NYL - 3SVD

w_xh_ SIXy
._wﬂ.“_._. (vd) 1NdNI

4313N0¥31300VY - 2 H313N0¥U3I1300VY - A ¥313INO0¥3ITI3DIYV - X




a - e, 1
xi xo
SAX
c = {- 0 -1
P quo
¥y 1 0
i i
2 =
{ d
Yy, tl’yo
SAY T ’
c =1 & " -1 (3.19) |
P ¥s
-1 0
¢Yi ] |
SN IR
1 o]
cSAZ _ | oy
P Z,
~! » lJJz.
s QLRI

The same applies to the gyro whose true input axis is
based on the gyro gimbal element structure. Figure 3. 10 illustrates

the inner platform-to-sensor transformations for the X, Y, and Z

gyros,
1 =N -n
Xi xo
SGX
Cp Gl 52 0 -1
o
n 1 0 |
b -
n 1 N
Y; yo
SGY
C = - i
P 0 nyo 1
I
L-l nyi 0 J
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my iy {
(6] 1
' 1 0 -, (3.20)
p ‘o
0 i n,
L e

Since the instruments are mounted to the inner platform, there is no
rotation between the inner platform and sensor frames. This com-

pletes the coordinate transformations.

3.3 APPLIED ACCELERATION EQUATION

The acceleration applied to the sensors is a combination of the
local gravitational and kinematic accelerations. A general equation
for the kinematic acceleration of the sensor frame with respect to the
inertial frame is developed in Appendix A and the results contained in
Fq. (A.31). Based on the coordinate frames and transformations
defined in Section 3.2, in conjunction with Eqs. (A.1) and (A.2) for
differentiation of a vector. the following simplifications can be made
to Eq. (A.31) for application to the centrifuge environment;

(a) bk 0, since earth rate is constant

—_c

b) R
(b) R,

X (w. X R. ), which can be combined with the
=ie =le T —je

W, o X (w. XBCS) term 1n Eq. (A.31) to give ‘—“-iex (ﬁicx R.)

i =ie 18
e L e - . 3
(c) R R R 0, since the earth and centrifuge main
—ccC —eCc —ec

arm frame have a common origin

00 c 2 C ] : : :
(d) R =R 0, since the centrifuge radius is ussumed
—Cr -——Cl.

constant at an operating g-level and the origin of the CRP

frame rotates with the centrifuge main arm




(e) R k" :Rp_ - 0, since, by alignment of the mounting
=kp =rp =p

fixture, the CRP frame origin is coincident with the inner
platform frame origin
°*P °p ; : :
(f) R = R¥Y =0, since the distance to each sensor is a
—ps —ps

constant and the sensors are fixed to the inner platform

Equation (A. 31) reduces to

o0 5
] W ] BEET S MRE Y
-—18 =eCc —C'S -CTr —ps —rp —‘pS

—Cs r —ps -=rp —ps
+29ec><(£crx_11p +“’rpXRps)
+‘2““’r (urpxgps)+wex(w1eXRs)
tuee X luee X Rog) * ey X (0o X Ry)

tw, X XR -} (3.21)
=rp *rp —Pps

The mass attraction term taken with respect to the sensor frame 1s

G M
e e . ) ‘
-l-Ris -_TR ; and, adding the @ a X (-c-“'-ie X B—is) term from Eq. (3.21),

. i8 . .
we arrive at the local-gravity vector with respect to the sensor frame

[Reference Eq. (3.5)].

s _ e e
B = uje X e X Rig) + 1p 2
15 R

(3.22)
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Define
(3.23)

t
Roc TR

w
=QCIr

where

Aw = uncertainty in the counter-rotation rate due to

misalignment between the two spindles and/or
variations in either the main or CRP drive system

Combining Eqs. (3.21), (3.22), and (3.23); expanding the vector

cross-products; and simplifying leads to the following vector expres-

sion for the total acceleration applied at the sensor frame with respect

to the inertial frame ﬁis

1
éis Lec " =cs
t 2w X o, XR_)+20 X(AwXR_)

R_ )

—.—ps

T @y = X @z o SORE ) F o ZAmS (e X
e Frp  —ps =7 \=r

FRec X loe X Rep) ¥ o X (B0 X Ry
—A_uix (ee(_ ¥ B—ps) + AQ_X (A(:)_X B—ps)
(3.24)

S
Ve Xl X Rog) + &

Since the platform rate and platform acceleration equations [Eqs, (2.33)

and (2.34), respectively| use the components of applied acceleration in
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the sensor frame, we require the matrix form of Fq. (

coordinatized in the sensor frame,

AF = &7

P)~r ek ck Jc
is pcriccc[zw ch R

ec cr

ek

ce c¢ Aer

+2W;
P

+ wck wck RE
ec “‘cr

cf RP
P ps

ck

c Aer

i [v'vrk Cr rk
cr

+Awrk rkerp]s
cr cr "p " ps

+ S cpgcrc [2wekc ¢t of kaRP]
P r|’c P Tp ps
k k ...pk

+ CF |wPX RrP +wp wPX gP
p[ rp  ps rp " rp " ps

[ZAer ct wPk Rps]z

P Tp p
@indicates Group 1

@ indicates Group 2

where

wf(‘: - is given oy Eq. (3.3)

ck

wec - is given by Eq. (3.11)
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c’ rP +G]
pS

Rp-AW cw CCRp
ppS r

PP

.24)
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rk

WCr - is given by Eq. (3.15) with w, "~ we = weos §ince the
bwp and Hw, effects are now accounted for in the
AwlK term
0 -(fvwr + ()wc) 0
rk
AW = [(ow, + ba) 0 0| [Reference Eq. (3.13)]
0 0 0
0 - W
l ) zp  “yp
: Tr’p s W “Oxn [Reference Eq. (2.33)]
" e T R

\K’Ck, V.Vrk V.Vpk - ave the cross-product form of the angular

ec cr’ J -
accelerations for the centrifuge, CRP, and
platform, respectively

G° = {0, o, g} is the gravitational acceleration in the earth
frame, where g is the magnitude of Eq. (3.5)

- | .
Re.. ={r, +5., 0. 0} [Reference Eq. (3.16)]

RP, - is given by Eq. (3.18) for the specific sensor for which

P®  the applied acceleration is being determined
RC_ =R+ Cy C; Rgs
CE - is given by Eq. (3.9)
C. - is given by Eq. (3.14)
C‘: - will be given in Section 4
C: - is given by Eq. (3.19) for the accelerometers and

Eq. (3.20) for the gyros
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y Eart At
Cb = [C ] = [C ] fora, b=-e, ¢, r, p, s. Inother words,
for all the C transformations between any
two of the coordinate frames, the trans-
formations are orthogonal, and, therefore,
the matrix inverse is equal to the
transpose [7].

Group 1 and Group 2 terms are defined as the desirable and
undesirable terms, respectively, and will :
be discussed later in the text.

The applied acceleration equation provides the sensor compo-
nent accelerations for the platform rate equation, Eq. (2.33), and the
platform indicated acceleration equation, Eq. (2.34). The procedure
for the platform rate equation is to obtain a solution of the applied

acceleration for each of the three gyros.

SGX : . .
Ay - {aIX, e asx> is obtained from Eq. (3.25) with
P _npP
Rps 3 Rp,GX' reference Eq. (3.18),
and CFS) = CIS)GX, reference Eq. (3. 20).
ASGY = {a a a is obtained from Eq. (3.25) with
i,SGY 1y’ *oy’ ?sy e 32
P _RpP s __SGY
Rps Rp,GY and Cp = Cp 8 !
i AR PO is obtained from Eq. (3.28) with
I,SGZ = IZ, OZ, aSZ 1 (o] aine rom q. . wi

P . b s _ .SGZ
Rps—Rp,GZ and Cp-Cp : J

The procedure for the platform indicated acceleration equation is to

obtain a solution of Eq. (3.25) for each of the three accelerometers.
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SAX

Akx {aIAX' Yy aOAx} iy obsained dracn Wa. (3.28) with
P _aPp .5 _ SAX
Rps Rp,AX and Cp & Cp m

reference Eq. (3.19).

AiSASTAY = {aIAY’ apy: aOAY} is obtained from Eq. (3.25) with
SAY
RP - RP and C* = ¢O07,
ps  p,AY P P
SAZ A ) 4
Ai,SAZ “{21az 2p7’ aOAZ} is obtained from Eq. (3.25) with

RP - RP and C° = CSAL.
ps p,AZ P P
Note that the a terms are not used in Eq. (2.34); therefore, only

oz

the ara and ap terms need to be determined.

Because the component solutions of the applied acceleration
equation are embedded in the platform rate equations, a careful
observation of the terms in Group 2 will show why this group is unde-
sirable. The terms in Group 2 consist of platform rate, rate of
change of platform rate (i.e., platform acceleration), and higher-
order products and cross-products of the platform rate. Embedding
these terms implies that the set of equations in F.q. (2.3 3) will be
nonlinear, coupled, differential equations. These equations would
have to be solved at least cach cycle of the filtering process to obtain
values tor the platforn vates,  Portunately, o8 wall be shown i S
trons 9 and 6 that these terms can be made neglyable by luniting the
magnitude of the commanded angular rate and/or using the commandud
angular rate to decrease the platform rate contribution of the drift
terms. Note that if all the inertial sensors vere located precisely

at the center of the inner platform, Rgs would be zero and all the
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Group 2 terms would vanish: in fact, five terms in Group 1 would also
vanish. However, since it is physically impossible to do this, the
Group 2 terms must be evaluated to determine if their contribution
can be neglected without affecting the accuracy of the error model
coefficient estimates.

In the next section, the platform rate and indicated accelera-
tion equations will be related to the state and measurement dynamic

equations, followed by the developinent of the extended Kalman filter

equations.




SECTION 4

EXTENDED KALMAN FILTER EQUATIONS

The platform rate and indicated acceleration equations developed
over the last two sections will now be used to define the state and mea-
surement equations. Once these equations are defined, the recursive
filtering algorithm, which formulates the basis for the data reduction
technique, will be developed from the extended Kalman filter equations,

Unfortunately, the rather laborious development of the platform
Eqgs. (2.33) and (2. 34) was necessary to understand how one can obtain
a prediction of the platform velocity to compare with the actual plat-
form velocity measurement. As will be shown later, the difference
between the actual and predicted measurement, called the measure-
ment residual, is used to correct the filter in such a fashion that the
estimates of the defined state variables will be 'improved," assuming
the actual measurements provide the best information available. A
brief review of the development to this point will show which variables

constitute the ''state'’ of the calibration problem.

4.1 STATE VARIABLES

As mentioned in Section 1, the objective is to obtain estimates
of inertial sensor error model coefficients. In the gyro performance
model equation, Eq. (2.20), the bracketed term contains an expansion
of the internal gyro error sources. This expansion is actually a math-
ematical error model that represents a general expression for those

typical errors found during 14 years of gyro testing at Fiolloman AFB.

Preceding page blank
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Which terms apply to a specific gyro depends on the physical structure
and assembly of the gyro. Therefore, the first task is to identify the
terms of the error model that represent the physical gyro error drifts.
The second task is obviously to obtain estimates of the coefficients for
those terms that are identified.

Sage [15] discusses one method of identifying parameters of a
system, assuming you know the general structure of the system
dynamic equations containing the parameters. It consists of defining
the parameters as state variables and reformulating the problem as a
state estimation problem. The form of the state estimation problem
considered in this dissertation is shown in Figure 4.1. The system
dynamic model contains the unknonwn error coefficients defined as
state variables. The output z(t) is a corrupted version of the state
x(t) due to the measurement noise v(t). Assuming the statistics of the
system disturbance w(t) and measurement noise are known, we desire
to determine a "best' estimate X(1) of the true system state x(t) from
a knowledge of z(t).

Based on the above, the error model coefficients for all three
gyros represented in Eq. (2. 33) are designated as state variabies.
The commanded angular rate term of Eq. (2.20) is comprised of an
unknown torquer scale factor times a known command torque tg' shown
in Eq. (2.33). The torquer scale factor of each gyro is defined as a
state variable. The final gyro parameters defined as state variables
are the misalignment angles given in Eq. (3.20) and represented
explicitly in the platform rate equation and implicitly via the applied

acceleration terms of kq. (3.25), which are embedded in the platform
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rate equation. ‘This implies that the platform rate equations are
nonlinear functions of the state variables,

The same philosophy is used in designating accelerometer
parameters as state variables. Equation (2.25) is a mathematical
error model that represents 12 years of testing experience at Hollo-

man AFB. Except for the a, term, it is identical to the performance

I
model given in Eq. (2.26). Consequently, the K coefficients for all
three accelerometers represented in Eq. (2. 34) are defined as state
variables. In addition, the accelerometer misalignment angles defined

in Eq. (3.19) and represented implicitly in Eq. (2. 34) via the applied

acceleration terms are designated state variables. Therefore, the

T T

platform acceleration equation is also a nonlinear function of the state

variables.

To obtain a prediction of the platform velocity profile requires

the knowledge of the inner platform angular position as a function of
time. Since the platform rate equations are a function of the estimated
states, the best we can doisto obtain an estimate of the platform angu-
lar position. Therefore, the last three state variables are the Euler
angles o, B, and y that track the inner platform motion with respect

to the platform base (which was showr in Section 3. 2.3 to be identical
to the GRE tramie). A sl ol the 63 otaces of the calbibiration procesa

is given an Table 4,1,
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Table 4.1. States of the Calibration Process

' Xy =Dpx %17 = Dooy 33 z 49 ~ K3y
X2 = Dpy X18 “ Dooz i % X50 = Ksy
X3 =Dpy X19 = Dggx X35 = My X5y = Kgy
X4 =Dy *20 * Dgsy X36 = y. X5z = Kipy
X5 = Dy *21 " Paag R T, %53 = Kipy
Xy =Dy X22 ~ Diox e Sl ¥ X54 = Kipy
X7 = Dox X23 “ Doy Sy = g, i
Xg = Doy X24 = Doy X40 = Kox Xs56 = q‘xo
X9 = Doy X25 = Digx X41 = Koy Ko7 = ¥y,

X410 = Dgx X26 = Disy X42 = Koy Rgg ° “y,
Xy1 = Dgy X27 * Disz X43 = Kyx Xgg = 5
X12 = Dgy X28 * Dosx X4 " Kyy R60 = ¥y
X413 " Dy X29 “ Posy Xgs5 = Ky 4 s =
X14 =Dy Xi1n  Dpgy X46 = Kox %oz =B
Xi5 = Dypy X351 - TSFy X471 = Koy ez, » ¥
X16 “ Poox X352 = TSFy X8 “ Kaz
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4.2 SYSTEM DYNAMIC MODEI

The system dynamic model consists of a set of Euler rate
equations that describe the motion of the inner platform during the
calibration process. Since the motion of the platform is uncon-
strained, large angle transformations are involved, which implies
that the order of rotation must be specified. The sequence of rota-
tions, shown in Figure 4.2, which give the orientation of the inner
platform frame p with respect to the CRP frame r, is (a, 8, y) about
the moving frame (x, z, y) axes respectively. From Figure 4.2, the

orthogonal Euler transformaticn from the r to p frame is

Eiy Ey2 Eis

T o ’ ,

P allime: - Wy o By (4. 1)
Esy Eip  Egq

where
E“ - cos ycos B
EIZ = cos y sin B cos @ + sin y sin @
E 3 = cos y sin B sina - sin y cos @
E21 -sin P
E

2p - cos B cos a
FL,3 = cos B sin e

E_.“ = sin y cos B
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E;, =siny sin B cos a - cos y sina

E33 = sin y sin B sin @ + cos y cos «a

The platform rates are a function of the gyro states, reference
Eq. (2.33), implying that, if the Euler rate equations are a function of
the platform rate, then the Euler angles will represent the drift gen-
erated by the gyro states at any point in time. Now the applied accel-
eration terms contained in Eq. (2.34) are a function of the Euler angles
via the C? transformation in Eq. (3.25). Consequently, the gyro states
are represented in the measurement process. As shown by Figure 4.1,
the system output z(t), which is the measurement equation, must be a
function of the system states as a minimum criterion for the system to
be observable [16]. However, just because the states are represented
in the mecasurement process does not imply that the system will be
ohservable. If the measurement information is such that the filter-
ing process has difficulty distinguishing between the states, then we
say that the states (which will be shown to be random variables in the
next section) are highly correlated and therefore the system by defini-
tion is unobservable [16]. Because of the concern for this observabil-
ity problem, a careiul evaluation was made of the filtering process
during the simulations that are described in Sections 5 and 6. One
significant discovery that was made during the simulations was that
the system observability could be monitored quite effectively by deter-
mining the level of correlation that existed between the Euler angle

states. It was found that command torquing was very effective in off-

setting the effect of the unobservability condition.

o




Based on the above, wec now seek an expression for the Euler
ratc as a function of platform rate. Referring to Figure 4.2, we
resolve the Euler rates into the inner platform frame p. The matrix

form of the resulting resolution is

. cos y cos f -sin y 0 -4
in 0 1 f.i (4.2)
=] -sin .
yp
a0 sinycos B cos vy 0 \./
Solving the matrix expression for the Euler rate equations gives
a - (wxp cos y + s sin y)/cos B
[d 1 3
B = “5p cos y - “xp sin y (4. 3)
9 5 A e -
y = (wxp cos y sin B + “yp SiD Y Sin B)/cos B + “yn
where the Euler angles are limited to the following ranges to avoid the

singularity that occurs when B - £ 90°,

Since the initial value of the Fuler angles (i.e., att = 0) reprecents
the small misalignments of the inner platform with respect to the CRP

frame, a Euler rotation sequence that provided a cosine term in the

A




denominator of Eq. (4.3), rather than a sine term, was selected, We
can see that another reason for command torquing the platform is to
prevent 8 from reaching the singularity condition. We now have all
the equations necessary to define the state and measurement equations

for the calibration process.

4.3 STATE AND MEASUREMENT EQUATIONS

A '"technical battle'" is presently being waged in the literature
concerning the proper choice of a statistical model or models for gyro
and accelerometer error coefficients (4, 5, 6]. Unfortunately, the
classical Gauss-least-squares approach, which has no probabilistic
meaning, was used for a number of years to obtain data from inertial
sensors., As discussed by Jazwinski [17] , there is no need to make
any assumptions about the system noise, since the problem is one of
minimizing deterministic errors in the least-squares approach. With
the advent of Kalman filter applications, a statistical description was
required for the system disturbance and measurement noise
(Reference Figure 4.1) in addition to the initial value of the state
x(to). Consequently, for the last o years, a major «ffort has been
made to determine a proper choice for the error coetflicient models.

Since the objective of this report ts to provide a general
aata reduction algorithim for testing an Inertial Navigation System on
the centrifuge, a general statistical model was selected for the first
60 states shown in Table 4.1. The important point is that to properly
apply the data reduction alogorithm, an analysis of component test
data should be made so that the general statistical model empioyed in

this report can be modified to represent the actual platform
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sensors heing tested. Sutherland and Gelb [4] found that a random
constant in combination with a random walk provided a good descrip-
tion of gyro drift and an adequate description for the accelerometer
terms. A random constant is represented by the following stochastic

differential equation
®
x(t) =0 (4.4)

where x(to) is a random variable. A random walk is represented by

x(t) = w(t) (4.5)

where w(t) is a random process and x(to) = 0., Combining Eqs. (4.4)
and (4.5), the statistical model assumed for the first 60 states is

represented by the following scalar, stochastic differential equation:

.\.ci(t) = w(t) =12 .., 60l (4.6)

where

X. (t ) - is a gaussian random variable reprcqentmg the
initial value of the ith state with mean x (t)) =

Xo; = E {x (to)} and variance 0';\012 “Poj ~

E ?[xi(to) - in]2§

E { } - is the expectation operator

{w (), e2t } - is a zero mean, gaussian white process
(i.e., time uncorrelated) representing the
ith state disturbance with covariance

cwi(t, ) = Efw (O)w, (1)} = O'Wizé(t -7




65(t - 1) - 1s the Dirac delta function

5 {[xi(to) : xoi] [w.(t)]} -0 li.c., the initial state, x;(t,) is
. independent of the disturbance
process wj(t)]

The scalar equitions for the last three states of Table 4.1
(representing the Euler angles) contain the system dynamic express-
ions of Eq. (4.3). The statistical model for these states is repre-
sented by the following set of nonlinear, stochastic differential

equations.

>.c6’(t) = [{wxp(x) cos [x63(t)] + wzp(x) sin [x63(t)]}/

cos [xéz(t)]] ik We (t)

).(62(t) i {wzp(x) cos [x()3(t)| - wxp(x) sin [x63(t)]}

w5 (t) (4.7)

§()3(t) = [{uxp(x) coc [x63(t)] sin [x62(t)]
tw, (x) sin {xg(0] sin {x g, (01} /

cos [xéz(t)] + wyp(x)] + W63(t)

where

w, (x), w (x), w (x) - arc obtained from Eq. (2. 33) with the
*P yp » variables of Table 4.1 replaced by their
associated state variable designations
(i.e., DF\C Xy etc.)
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xm(t“). x62(ln), x6.5(1“) - are gaussian ran(.lom_ variables
representing the initial values of the
Fuler angles with mean x”j and

variance vajZ (j =61,62,63)

w61(t), w62(t), w63(t) - are zero mean, gaussian white processes
representing the jth state disturbance

with covariance O’W.Z 5(t - 1)

(j = 61,62,63)

wj(t) and xj(to) are independent

Combining Eqs. (4.6) and (4.7) gives the following state vector

equation for the calibration program.

ap—_—

X = f{x,t) + w(t) (4.8)

where

i - is a 63-eclement vector of the state derivatives
z(t) - is a 63-element disturbance vector 1

f(x,t) - is a 63-dimensional vector-valued, nonlinear,
function of the state

{wit), t 2 to} - is a zero mean, gaussian white, vector,
disturbance process

£ 3y(t)V_&:T(T)§ = Q(t)6(t-T)

Q(t) - is a (63 X 63) covariance matrix of the 3

: N 2
disturbance process containing the Twy elements

E B(to)} =x -isa 63-element mean value initial state vector
containing the Xo; elements

E ; [x(t) - x Mx ) - -§o] T P,
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Po - is a (63 X 63) covariance matrix of the initial state

Be 2
vector containing the Txo; elements

I3 ‘g(t)l x(t ) - x ] T% -Oforallt 2t '

l

O - is a 63-element null vector since the initial state
_)E(to) is independent of the disturbance process w(t)

The first 60 elements of f(x,t) are zero, as can be seen from Egq.
(4.6); the last 3 elements are the dynamic expressions on the right-
hand side of the set of equations given in Eq. (4.7).

It is important to understand the relationship between the
selected state statistical model and the physical parameters of the
Inertial Navigation System. The first 60 initial state random
elements, xi(to), usually represent the variations that occur in the
sensor error coefficients, the sensor true input axis location, and
the sensor torquer scale factor between the time that the sensor is
turned off and the time it is turned hack on. These random changes
in the values of the sensor variables between turn oftf and turn on are
referred to as the sensor's repeatability, In other words, it has been
determined from sensor teats that the values of the error coefficients,
input axis misalignment anglea, and toraaer scale factor are different
each time the sensor is activated,  An analysis of large amounts of
sensor test data at the Holloman feeility veveals that this lack of
repeatability can be adequately desc ribhed by a gausitan nrobability
law. Once the sensor is operating, random changes in the internal
mechanism of the sensor and the sensor feedback loop, which are
believed to come from sources independent of those causing the

repeatability problem, are represented by the gaussian white

i —




disturbance process, w(t). The assumption of a gaussian distribution
for the random operating changes is again based on an analysis of
sensor data. The assumptions that the disturbance is white (uncorre-
lated in time) and independent of the repeatability sources are difficult
to justify physically, simply because not enough is known about the
complex internal and external mechanisms that generate the distur-
bances. This is one subject presently under technical debate. The
importance of these assumptions will be shown later. This is one
area that a careful analysis of the sensor data should be made to
determine, if possible, whether the statistical model as proposed is
an adequate approximation for the physical sensors bein.g tested. For
example, if the disturbance process is determined to be time-corre-
lated, there are techniques discussed by Meditch [16] and Jazwinski
[17] that resolve the problem by augmenting the state vector. Aug-
menting the state vector (which already contains 63 elements), for
each sensor variable found to have a time-correlated disturbance,
could increase the complexity of the problem tremendously. The
questions now are how much improvement in filter performance will
be obtained and does the improvement warrant the increased ccm-
plexity? As is the case in many physical problems, a simulation may
show that the simpler model is an adequate approximation for the level
of accuracy desired in the state estimates.

In the calibration problem, the first 60 initial state elements

represent a slightly different initial condition; since in the calibration

procedure, the system has been operating for quite some time prior

to the start of the system calibration at time t = to. For instance, in

\)1
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the centrifuge tes!, the initial condition does not occur until the cen-

trifuge is stabilized at a selected g-level, and a new initial condition

is established for each additional g-level specified as part of the total g
test sequence. Hence, the initial condition state for the calibration

problem is actually a combination of the repeatability effect plus the

operating disturbance input up to the time whent = t,- Equation (4.6) .
shows that the state process x(t) is a linear combination of two

gaussian variables. Since the imean value of w(t) is zero, the mean

value of x(t) at any point in time will be equal to the mean value gen-

erated by the repeatability effect. The variance of x(t) is simply the

sum of the variance due to the repeatability effect plus the operating

disturbance, since the variance of a sum of two independent random

variables equals the sum of their respective variances [18].

T LT (4.9)
Consequently, for the calibration prcblem, the statistical model can
represent the initial condition states of the first 60 state variables
simply by adjusting the variance to include the input disturbance up to
the time when t = ty: The importance of the independence and gaussian
white assumptions can now be realized, since correlation in the
disturbance process or between the two variables would complicate
the modeling effort.

The initial value of the last threc Euler states described in
Eq. (4.7) represents the inne: platform misalignments with respect

to the CRP frame. These can be described by a gaussian distribution

about a2 mean initial value, since the normal procedure for the system




calibration is to align and level the platform via a standard gyrocom-
pass technique {2, 10]. The mean valuc represents the nominal
misalignments that occur at the conclusion cf the gyrocompass pro-
cedure, and the variation occurs due to the system mechanization
uncertainties. In the case of the centrifuge operating test, the plat-
form alignment is maintained and reestablished at each g-level by
caging the platform gimbals [10]. Caging is accomplished by switching
the input to the stabilization loops from the gyros to the gimbal syn-
chros and resolvers. The stabilization loops use the signals from the
resolvers to drive the gimbals until the synchros reach their electrical
null positions, which correspond roughly, through physical alignment
of the s/nchros, to an aligninent with the platform base mounting
frame. The mean value and variations occur via the caging procedure.
The operating disturbance represents the random variations associated
with the noise generated over the small operating range of ‘he driver
amplifiers contained in the stabilization loops.

Before proceeding to the measurement equation, one final
comment is required concerning the formality of Eq. (4.8). In Chapter
3 of Jazwinski [17], an outstanding discussion is given, showing that,
since the sample functions of w(t) are a function of the Dirac delta
function [i.e., w(t) is delta-correlated], w(t) is not Riemann integrable
in the mean square sense. Therefore, Eq. (i.8) has no mathematical
meaning as it is presently defined, since the equation can not be
integrated to obtain a solution for x(t). However, as shown by
Jazwinski, gaussian white noise is the formal derivative of independent

Brownian motions. A formal representation of the stochastic
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differential equation is

dx(t) = f(x,t)dt + d A(t) (4.10)

where

“\_(t),l > t0| - is a vector process of independent Brownian
motions

The first term on the right-hand side of Eq. (4.10) can be integrated
it the mean square sense or via an ordinary integral for the sample
functions of x(t). Integration of the second term can not be defined for
the sample functions because of the erratic properties of Brownian
motion. However, intcgration of the second term has been defined in
a mean square sense by It and is called the Ito stochastic integral.
Hence, a solution of x(t) can be obtained in the mean square sense with

1 the formal equation. So that equations that contain gaussian white ¢

processes are integrable, the gaussian white process is always

assumed formally related to the independent Brownian motion process

{l(t),t > to" In other words, \_v(t) is formally related to the Brownian

process as:

The measurement equation is bascd on the platform acceleration

model, Eq. (2.34).




AND h(_:f_,t) + mi(t) (4.12)

where

3D - is a 3-element indicated accelcration vector

.}l(f't) - 1s a 3-dimensional vector-valued, nonlinear,
function of the state

m(t) - is a 3-element measurement noise vector

The function h(x,t) is obtained from Eq. (2.34) with the variables of
Table 4.1 replaced by their associated state variable designations,
The actual INS measurements are the velocity change over the interval
between measurements. A first-order approximation of the vector

velocity, using Eq. (4.12) as the rate of change in velocity, gives:

vit + At) - vit) = Ay - _l_l(z,t)At + m(t)At (4.13)

where

At - is the time interval between measurements

Av - is the 3 element vector velocity change over the
measurement interval

Since the measurements are obtained at discrete time points

(tn, n=1,2,3,...), the discrete form of Eq. (4.13) gives the final

version of the measurement cquation for the calibration problem.

Ay_(tn) =h[3c_(tn),tn] At + x_r_1(tn)At (4.14)




where

At - is the time between the (n-1)th and nth mcasurements,
A = 8- ¢
n n-1

{m(tn), n=1,2,3,...)-is azero mean, gaussian white,
vector, measurement noise sequence

E {m(tn)At} = (_) for all values of n Wi 2, 35 e iSEDICE Ql(tn)
is a zero mean sequence

_ T - (an? el -
E jm(t)Atm " (t )8t = (B)TR( )6, for all j,n =1,2,3,...

R(tn) - is the (3 % 3) covariance matrix for the measurement
noise sequence

0 for j #n

5. is the Kronccker delta
in p
. i for j = n

E

[ x(t ) - x ][m(t )] l s O for all n 1,2,3,... since mi(t )
-0 =o' '=—""n —_ . —''n
is assumed independent of ._w(to)

O for all j, &% =1,2,3,... sidce @t ) is
assumed independent of ‘ﬁ(tj)

E 3[1".“3')”2““’] 3

The accelerometers in the system have their own feedback loops,
referred to as 'Vcapture loops, " since they "capture' the pendulous
clement and prevent it from rotating too far from the null position.
The initial state and state disturbance variations, discussed in con-
junction with the state equation, arce generated in the internal mech-
anisms of the accelerometer and its capture loop. The output of the
accelerometer is a series of Av pulses that are processed and counted
in the system computer circuitry. The mcasurement noise sequence
is related to the electronic noise generated in the system processing

loop that eventually becomes the system output velocity change.
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Consequently, the assumption that the noise sequence is independent of
the disturbance and initial state variations is justified, since there is
no physical dependence between the gyro and accelerometer circuitry
and the system output processing circuitry. The assumption of zero
mean gaussian noise is based on an analysis of system output data.
The assumption of white noise is based on the reasoning that there
should not be any relationship between random electronic noise and
the sequence of measurements being processed through the circuitry.

The past reference to the measurement ""dynamic'" equations
can now be understood, sincec the function h(x,t) contains the dynamics
of the velocity measurement trajectory. It will be shown in the next
section, that the rather rough first-order approximation used to obtain
the Av form of the measurement equation has a minimal impact on the
filtering process since the only area wheie the approximation is used
is in the computation of the filter gain mat rix.

With the state and measurement equations defined, we can now
procced to develop the extended Kalman filter cquations that constitute

the filtering algorithni, which in turn completes the requirements for

the data reduction problem.
4.4 EXTENDEDKALMAN FILTER EQUATIONS AND
FILTERING ALGORITHM

We start the development of the filter equations with the given

nonlinear state equation, which is reneated below.

x(1) - f(x,t) + w(t) (4.8)




Keeping in mind that the following equations are vector expressions,
we will drop the sub-bar notation, X, as a matter of notational conve-
nience. We linearize Eq. (4.8) about a reference or nominal trajec-
tory, where the nominal value of the state is set equal to the filicred
estimate. The filtered estimate, X(t|t), is defined as the "best"
estimate of the state x(t) based on measurements taken up te time '"t'. ‘
In the case of a linear state equation, it is well known [16] that the I]
filtered estim.ate is an optimal estimate, since the Kalman filter :
process, which generates the estimate, minimizes the variance of the

filtering error. The filtering error, X(t|t), is the difference between

the true value of the state and the filtered estimate.

X(t]t) = x(t) - X(t]t) (4.15)

In the case of a nonlinear state equation, the filtered estimate is

= i St

optimal only with respect to the linearized equation. Whether the
estimate is good or "best' with respect to the nonlinear state equation E
depends on the validity of the linearization.

The refereice trajectory is a deterministic trajectory obtained ]

by setting w(t) to zero in Eq. (4.8) and the nominal value of the state,

HURNTDRE

X = %(t|t). Therefore,
nom 1
]
x(t! . 1
(—11‘-:—}——‘—) ke, 1 {21 (4.16)
t (]
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’ is the equation of the reference trajectory. We define the deviation

from the reference trajectory as
A -~
6x(t) = x(t) - X(t|t) (4.17)

Comparing Eqs. (4.15) and (4.17), we see that the deviation is
equivalent tc the filtering error.
Differentiating Eq. (4.17) and substituting the expressions

contained in Eqs. (4.8) and (4.16) gives
—= = fix,t) - f[x(t|t),t] + w(t) (4.18)

If the deviations from the reference trajectory are small so that the
higher-order terms can be neglected, a Taylor series expansion about

the nominal filtered estimate gives
fix,t) - £{x(t1t),t] TFR(t]V),t] ox(t) (4.19)

where

af(x(t]t),t]

k., b
J

Flg(t|e),¢) 2

is a (63 X 63) matrix of partial derivatives of the elements of f(x,1),

evaluated at S‘c(t!t), with respect to each state variable xj. Substituting

the approximation of Eq. (4.19) into Eq. (4. 18), we obtain a linear
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perturbation equation that is valid for "small" deviations about the

reference trajectory,

id%’—‘ = Fl%(t]t) t] x(t) + w(t) (4.20)

Since the measurements are discrete, we discretize Eq. (4.20)
so that we can develop the filter equations using the discrete form of
the Kalman filter. It is a personal preference to compute the solution
via the state transition matrix, rather than solving the matrix Riccati
equation to obtain the filtering error covariance matrix as required in ]

the continuous filter procedure [16]. Therefore, discretizing and

integrating Eq. (4. 20) over the time interval [tn_ i ,tn] gives the ) 1
t following discrete solution to the perturbation equation.
]
= 3 .= \ 5
ox(t ) = olt .t _ix(t |t éx(t )+ Dt ) (4.21) h
! where

t
-— n [ . S
D(tn-i) 2 '/t' ‘Dltn."’. x(tn-lltn-l)]W(T)dT
A n-1

(D[&n,tn 1,52] - is the state transition matrix [16]

] The state transition matrix is obtained by solving the following

{ matrix differential equation. -

Blov, R |t ) = FERe Dy ) el g &y )
! (4. 22)

n-1" n 5
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The initial condition for the matrix ditfferential equation 1s
Qltn—I' ln-l; i(ln-l 'tn-l)| - | (4. 23)
where
I-is a (63 x 63) identity matrix

The relationship between Egs. (4. 22) and (4. 21) should be clearly
understood. The purpose of the transition matrix is to transform the

perturbation states, 6x(tn_1), along the reference trajectory from time 4

point t.-qto time point b Hence, as shown by Eq. (4.23), the transi-
tion matrix would logically be the identity matrix at time LT In the
perturbation solution equation, Iq. (4.21), we sce that the value of ¢
is at the final time t since getting a solution requires that the pre-
vious value of the perturbation stotes éx(ln_i) be transformed along
with the system disturbance to the solution point at time t Trans-
forming the perturbation states along the reference trajectory implies 1
that ¢ must be a function of the perturbation dynamics; Eq. (+.22)
verifies this by the F matrix of partials. Equation (4. 22) represents

the set of dynamic equations that permit each element of the transition

matrix to be determined at any time t over the closed interval

[tn-l' tn] . Therefore, Eq. (4.22) is used to obtain the elements of @,

evaluated at time Ly for solving Eq. (4. 21). b

Solving Eq. (4. 22) appears to be a formidable task, since ® con-

tains 3969 elements. Fortunately, this is not the case, since the

maximum number of differential equations will be 189. The reason is

101




that the first 60 elements of_f_(_)_c, t) are zero; therefore, the first
60 rows of F will be zero. Assuming each element of the last three
rows of F will contain nonzero partials, the maximum number of

equations would be 3 times 63 or 189. .

S ——

It will be shown in Section 6 that the reason ¥, and therefore 9,
is a function of time is due to the applied acceleration being a function
of time for the operating centrifuge test. In the case of the 1-g calibra-
tion in the local gravitational field, the F matrix is constant since g is
coastant. Meditch [ 16] shows that for a constant F matrix, ¢ can be

determined using the matrix exponential.

Q[tn, beai i ;E(tn-l Iln_l)] expiF(tn - tn_l)}

P g
=TI+ F(t_ -t )+ + S L 1
e — oG
butt -t = At, so
n n-1
oft , t_ . x(t [t )]-I+F.M+F2(At)2+ +rm(‘m)m+
[-n' n-1’ n-1'"n-1/3 ~ 2! m ! i
(4. 24)
wherc

I—-1s a (63 X 63) 1dentity matrix

F - F[x(tn_1 | tn_l)] 1s a constant matrix

X . .
exp.x; =e  is the exponential function




-

The number of terms in the @ series is obviously a function of
the time between measurements At and the desired accuracy of . A
computer solution of Eq. (4. 24) is definitely computationally more
efficient than solving the set of differential equations of Eq. (4. 22) for
the time-varying ® case. The centrifuge simulation of Section 6
reveals that the filtered estimates obtained by assuming that F was
constant over At, and thereby permitting Eq. (4. 24) to be used, were
just as good as those obtained by determining ® via Eq. (4. 22).

The disturbance sequence w(tn_l) of Eq. (4.21) can be considered
as a piecewise constant function of time for the measurement intervals
(which range from 0. 02 to 1. 0 second) of the calibration problem.

Therefore, the D(tn-l) term can be simplified to
D(tn_l) = Fltn, tn-l; x(tn_1 | tn_l)] w(tn-l) (4. 25)

where I'is defined as

e A 'n ®
I"[tn, toy x(tn_1 'tn~1)] =f Q[tn, T} x(tn_l ltn_j)] dr
tn-l
(4. 26)

Note that the right-hand side of Eq. (4.26) reveals that we need to
solve for ¢ from tn back to tn-l' In other words, @ must be solved
backward in time. Hsu and Meyer [ 19] show that a solution of ¢

backward in time can be obtained using the adjoint system equation.

Hence, ¢ from t back to ln-l 1s obtained from the following adioint,

matrix differential equation.




it X X (1, X I
(Dl ln' ki x(ln-iltn-l)| p ‘plln' L Mtn-l“n-l)l Pll’ x(tn-l ln-l)]

(4. 27)
The initial condition for the adjoint equation is

ol toe bty i(tn_ q | tn_l)] =] (63 X 63) identity matrix

(4. 28)

With & (tn, t, X) determined from Eq. (4.27), we substitute ¢ into
Eq. (4. 26) to get I'.
Equation (4. 27) reveals that since ¢ premultiplies F, the fact

that F has 60 rows of zero elements does not help reduce the number

of differential equations.

Assuming the last three rows of F contain

nonzero partials, Eq. (4.27) will generate 3969 equations. Fortunately,

the assumption that F is constant over At (based on the centrifuge
simulation results of Section 6) permits [ to be determined by sub-
stituting the exponential series of ¢, from Eq. (4.24), into Eq. (4.26).

The substitution results i1n the following series expression for I', when

F is a constant matrix.

2 m+1
2 o~ (at) m (At)
Fle ot o Xt ft ) =18t + FiSfes . +F7 Sy + ...

(4.29)
The discrete solution to the linear perturbation equation,

Eq. (4. 21), can now be written as

6x(tn) ;d)lln' tn_1; X(tn‘lltn'l)

] bx(t )+ r[ to toogs R tn_1)]

(4.30)

X w(ln_l)

where X represents ihe matrix product of [ ana w,



We now develop the lincar perturbation equation for the nonlinear

measurement equation, recpeated below.

av(t ) = h{ x(t ), tn] At + mft ) At (4.14)

The approach is similar to that used for the nonlinear state equation

except that slight modifications must be made, since Eq. (4. 14) is an

approximation. As with the state equation, we first need an expression

for the nominal or reference measurement trajectory. Since itis a

deterministic trajectory, we set the measurement noise sequence

m(tn) to zero and select a nominal value for the state x (t.).

nom n

Av(tn) =h| *nom

(t ), t ] at

The question now is: what should the nominal state be for the

reference measurement trajectory?

To help answer this question, let us regress in order to under-

stand the selection that was made for the state equation. Expressing

Eq. (4.16) as a general form of the reference state trajectory gives

(t) 1
e = (X B, ] (4. 32)

Any solution to the nonlincar differential equation could be used as a

reference trajectory. In the case of an arbitrary nonlinear differential

cquation, the existence and uniqueness of solutions remain open

questions. When the structure of the function f[x(t),t] satisfies a

Lipshitz condition, then there exists a unique trajectory through each
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point .n state space. Assume that we select X om(t) as the solution
through the initial a priori estimate ?c(to). Then, at later times it
is possible that the perturbations

ox{t) = x(t) - xnom(t) (4.33)
could get excessively large. Since the linearized equations that form
the basis for the Kalman filtering rrocess are only valid for small
perturbations about the xnom(t) we have chosen, the filiering process
for the actual system would be at best inefficient, assuminyg it was
stable. More than likely, the nonlinearities that were negle :ted auring
linearization would cause the filter to diverge.

It now becomes obvious that the best selectioa would be to base
the value of L Y (t) on the measurement data; so that the reference
trajectory is actually being constructed, as the problem develops,
based on the latest measurement information available. What we have
just described is the estimate produced by a Kalman filter. The
filtered estimate SE(tn_l | tn-l) is the "best'" estimate of the state at
time ta-t? based on measurements taken up to time tn-l'

In the case of the measurement equation, Eq. (4.14), we sce that
we need the state at the end time, tn’ or the time of the next measare-
ment. Hence, we need to project our best knowledge of the state
forward in time. The best '"predicted' estimate would be the value of
the state at time t  that lies on the reference trajectory. We use the
state reference trajectory equation, Eq. (4.32), to determine the

predicted estimate of the state at time t, based on the measurements




aasing |

1 9 Aﬂ ol 3
up to time t _.; in other words, x__ (t) = X(tnlln_ t) x“n'tn-l) 3

obtained by integrating Eq. (4. 32) from to1 tot .

. vy ——

X t
f "d:‘i(tltn_l)= f nf[i(tltn_l), t] dt

xn_1 t

e

n-1

The solution is the nominal value we will use for the measurement

equation.

t
AA -~ n -~
X om () = x(tn|tn_1) =&t (It )+ f £ x(¢| thog)e t]dt

"
Bt (4. 34)

Equation (4. 34) shows that the predicted state estimate is obtained by

adding the integral of the undisturbed, nonlinear state equation to the
filtered estimate.

Similarly, the best predicted measurement, Afr(tnl tn- 1), can be
obtained from integrating the exact nonlinear measurement equation,

Eq. (4.12), with the measurement noise set to zero and the state equal

to the predicted state estimate.

1Y t tn
f "% at - f h{&(tlt ), t] at
th-1

th-1
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Hence, the best predicted measurement is

t
A [t ) :f nh[i(t|tn_l). t] dt (4. 35)

th-1

Note again, that Eq. (4.35) is exact and not an approximation of the
measurement equation. This is the predicted value of the measurement
that will be used in the extended Kalman filter to compare with the
actual measurements from the Inertial Navigation System.

Now, for the perturbation equation, the reference measurement
trajectory is the approximation given by Eq. (4. 31). The predicted
measurement estimate for the perturbation equation Afrp is the following
approximation with the nominal value of the state equal to the predicted

state estimate.

INACRUNRES Y E N T AR Y (4. 36)

p'n' n- n

The deviation from the reference measurement trajectory is defined as

svit ) eAv(tn) S AURTY (4.37)

n

Substituting Eqs. (4.14) and (4. 36) into Eq. (4.37) gives

dv(t ) = h[x(tn), tn] At - h[i(tnnn_l), t.] at+ m(t ) At

(4. 38)
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If the deviations from the reference measurement trajectory are

small, so that the higher-order terms can be neglected, a Taylor f

series expansion of h(x, t) At about the predicted state estimate gives

hxt ), tn] At gh[i(tn,tn-l)' t,] ot

(4. 39)
+ H[i(tnltn_l). tl =) - &e |t}

where
ah. [%(t_[t_ ), ¢t ]
- g1°0 n' n-1 n
H[x(tnltn-l)' tn] 1 ox. Al
i=1,2,3% j=1,2, , 63

is a (3 X 63) matrix of partial derivatives of the elements °fl‘.[§(tn)' tn] ;
evaluated at i(tnltn-i)’ with respect to each state variable x., and
finally multiplied by At. Now Eq. (4.17) evaluated at t = t and with

measurements up to time tn—l gives
6x(tn) = x(tn) - x(tni tn-l) (4. 40)

! Substituting Eqs. (4. 40) and (4. 39) into Eq. (4. 38) gives the following

discrete solution to the measurement perturbation.

svlt ) = H[i(tnltn_i). t, ] &x(t ) + m(t ) At (4. 41)




Equatioqs (4. 30) and (4. 41) give us the following linearized

discrete system

ox(t ) = o[ SP T i(tn_l 'tn-l)] ox(t )+ I‘[tn, oy i(tn_l ltn_i)]

X w(tn-l) (4. 42)

sv(t ) = H[i(tnltn_i), t,] ox(t ) + m(t ) At

with the following stochastic description

{w(tk), k=0,1,2, } - is a zero mean, gaussian white, I

vector, disturbance sequence

E{w(tk) wT(t.)} =Qlt,) 6., forall j,k=0,1,2... is the
J J disturbance covariance

{m(tn), = 1:53... ‘ is described in Eq. (4. 14) ]

-
w(tk) and m(tn) are independent for all k and n

From Eq. (4.17), with t = to
i
6x(to) = x(to) - x(tolto) (4. 43)

For the case of linear dynamics and linear measurements, it is weli

known [16] that i(t[t) is obtained by a linear operation on the measure-

ments, and is therefore a gaussian random vector. Also, by definition

]
&, lt) S Efxie )} = x (4. 49) ‘

|
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Since x(to) is gaussian with a mean value of X Fqs. (4.44) and

(4. 43) reveal that 6x(t°) is gaussian with the following values for its

mean and covariance,.

Eféx(t )} = O

E{ax(to) 6xT(t°)} E{[x(to) - % ][t ) - xo]T} (4. 45)

P [ Reference Eq. (4.8)]

Finally, 6x(to) is independent of w(tn-l) and m(tn) for all values of n .
Equation (4.42) and the associated stochastic description meet

all the requirements of Theorem 5.5 of Meditch [16]. Therefore,

the theorem shows that the best filtered estimates of the perturbation

states are generated by the linear Kalman filter,

6i(tn|tn) = bi(tn|tn_l) + A )[6v(t) - HZ, t ) 5;‘(‘n|‘n-1)]
(4. 46)
where
Slty |ty g) =oleg, vy eyl ] el e, )
Hx, t) = HIx |t ), t)

A(tn) - is the Kalman gain, whose equations will be given later
in the text

We are not directly interested in the perturbation states, except

for the equations to compute the Kalman gain A(tn), which will be given

later. We are interested in obtaining an expression for i(tnltn). If




w——

we take the conditional expectation of Fq. (4.17), with respect 1o the
measurements up to time tn-l' and let the state be at time t = tn—l'
we find that

oR(t _ lt =g le _)-%e e =0 (4. 47)

n-1
Therefore, 6§(tnitn_1) of Eq. (4.46) is also zero, so Eq. (4. 46)

reduces to
6x(tn|tn) = A(tn) 6v(tn) (4. 48)

Now, if we take the conditional expectation of Eq. (4.40), with respect

to the measurements up to time to and let the state be at time t = ty

we find that
8R(t |t ) =x(t |v) - %t [t ) (4. 49)

Note that in Eq. (4.49) the predicted state estimate is independent of
the measurement at time t = L in other words, you dou not change the
predicted state estimate that was projected from time b= i based on
later knowledge of the measurement at time t Therefore, the last
term of Eq. (4. 40) does not change because of the conditional expecta-
tion operation. Since we are interested in using the best predicted
measurement defined by Eq. (4.35) in the extended Kalman filter,
rather than the approximation of Eq. (4. 36), the deviation from the
reference measurement trajectory can be redefined to be

bt ) S avit) - A% [t ) (4. 50)

n-1
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Substituting Eqs. (4.49) and (4.50) into Eq. (4.48) gives an expression

for the ""best'' estimate of the state at time tn

:‘E(tnltn) = i(tnltn_l) + A )av(t ) - Ac(tnltn_l)] (4. 51)

where

x(t ltn) - is the filtered estimate at time t, and therefore
provides the '"best'' estimate of the state x(t ) based ou
measurements taken up to time t

t

n -~
Rt |t g) = % _gta) t f f[x(tltn_l), t] dt -

th-1

is the predicted state estimate [ Reference Eq. (4. 34)]

A(tn) - is the Kalman filter gain

Av(tn) - is the actual INS velocity measurements

t
- n -~ . »
Av(tnltn_l) = f h[x(t|tn_1), t] dt - is the predicted

th-1

measurement [ Reference Eq. (4.35)]

[Av(tn) - A\?(tnltn_l)] - is the measurement residual mentioned

at the beginning of Section 4




T

The equations for computing the Kalman gain A(tn) are also from

Theorem 5.5 of Meditch [16]

-1
Ale) = Pt |t ) HT[H P(t_[t ) HT + R*]

X T T
Pt |t, ) = @Plt__ |t )& + rar (4. 52)

Plty|ty) = [1- Alt)) H] Pl |t ) (1 - At)) H1 T+ At ) R* AT(:n)

where

H = H[i(tn|tn_1), tn] [Reference Eq. (4.39)]
R* = (ay? R(t)  [Reference Eq. (4.14)]
=0l tr Yooy ;‘(tn-l | tn_l)] [Reference Eq. (4.22) or (4. 24)]

rs= F[tn, tot: ;‘(tn-l | )] [Reference Eq. (4. 26) or (4.29)]
Q=Qlt _,) [Reference Eq. (4. 42)]

I - (63x 63) identity matrix

P(t 't ) and P(t_|t ) - are the filtering error covariance
n-1| n-1 n| n : :
matrices at time t__, and t
respectively

P(t

nltn-l) - is the prediction error covariance matrix

o A o AL
6x(t ) = X(t t )= x(t) - x(t_|t _¢) is the prediction error
. nl*n-1 o nI =i [Reference Eq. (4.40)]

= Py ~
ox(t ) =x(t It ) =x(t ) - x(t t _.) is the filtering
-1 n-1]'n-1 h=1 n-ll u=1" wwor [Reference
Eq. (4.17)]




Equation (4. 51) 1s known as the extended Kalman filter, since it
applies to the nonlinear state and measurement equations. In other
words, it extends the filtering process beyond the linear perturbation
equations of Eq. (4.42). It is important to note, however, that the
Kalman gain is based on the linear perturbation equations. Therefore,
the requirement that the state and measurement deviations must remain
small is stil! a constraint on the filtering process. This can be seen
in the second term of Eq. (4.51). The second term, consisting of the
Kalman gain multiplying the measurement residual, is called the
correction term, since it corrects the predicted estimate i(tnltn_l)
based on the measurement data. If the linearization is invalid, the
Kalman gain will apply an ''invalid" correction that will degrade the
filtered estimate. Note that the approximation of the Av equation,

Eq. (4.13), is contained only in the Kalman gain computation, as was
mentioned in Section 4.3. The simulation results show that the effect
of this approximation is negligible, as long as At is maintained
reasonably small. The most important point to understand is that

Eq. (4.51) is the solution to the calibration problem. It formulates the
data reduction method to obtain the best estimate of the states in

Table 4.1. A schematic of the extended Kalman filter algorithm is
shown in Figure 4.3, The algorithm simply implements Eq. (4. 51).

The simulations described in Sections 5 and 6 will provide
answers to most of the questions raised in this section. The questions
answered by the simulations are:

(a) Is the linearization and therefore the filtering process

valid ?
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(b) Is there an observability problem, and, i1f so, can the data
reduction technique resolve it?
(c) Does the Av approximation prevent filter convergence?
(d) Can the computation of the filter be simplified by assuming
F[X, t] is constant over the measurement interval, and
thereby permit ¢ and I' to be determined by the simple
power series forms of Eqs. (4.24) and (4. 29) respectively?
The only question that remains is the impact on the assumed statistical
model if the disturbance process is found to be correlated. Bucy and
Joseph [20] show that correlated noise can be approximated quite well
by uncorrelated noise having the same ow frequency spectral density
as the correlated process. They claim that the approximation is valid,
provided that the time constant of the noise is small with respect to the
total filtering time. In those cases where a correlated model was
assumed for gyro drift, the lime constanl was specified to be in a
range of 20 to 50 seconds. Sections 5 and 6 will show that the total
filtering time will be 10 to 15 minutes per g-level for the centrifuge
calibration and 2 to 3 hours for the 1-g calibration. Thercfore, the
assumed statistical model with the adjusted variance proposed by Bucy
and Joseph may be an excellent alternative to auginenting the state

vector.
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SECTION &

SIMULATION OF A 1-p CALIBRRATION

A centrifuge test program normally consists of a 1-g calibration
in the local gravitational field prior to and immediately following the
operating centrifuge test. The purpose of this test is to determine
the overall effect of the centrifuge environment on the fixed and first-
order error coefficients. The results of a 17-state simulation, using
the same techniques proposed for the operating centrifuge test, are
contained in this section. Measurement data was generated by
simulating the platform motion due to error drift, earth-rate input,
and a prespecified command-torquing profile. The measurement
data was input to the extended Kalman filter algorithm, defined in
Section 4, to obtain estimates of 14 inertial sensor parameters and
the three Euler angle states used to track the platform motion. The
simulations described here and in Section 6 were developed and
operated, over a 6-month time period, on a Control Data Corporation
7600 scientific computer located at The Aerospace Corporation,

El Segundo, California.

5.1 SIMULATION STATES AND EQUATIONS

Since the applied acceleration is limited to 1 g, only the fixed
and first-order sensor coefficients contribute significantly to the
gyro drift and accelerometer output uncertainty. As will be shown
in Section 6, the higher-order accelerometer coefficients range from
5to 12 y.g/g2 for the second-order terms and 3 ug/g3 for the third-

order terms, where 1 pg - 1 X 10'6 g's. The gyro higher-order

Preceding page blank
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. 2 ;
compliance terms range from 3 to 4 meru/g~, where a meru is a rate

unit defined by

-
1 earth-rate-unit (eru) = 7.292116 X 10 ° rad/sec = 15 deg/hour
-3

1 milli- earth-rate unit (meru) = 10 ~ eru

and is obviously based on the earth's rotatioral speed W o

The 14 sensor parameters and three Euler angles are defined
in Table 5.1. All the fixed and first-order accelerometer terms
normally considered in a platform calibration have been included. In
the case of the gyro, the mass unbalance was limited to the input axis
term. One misalignment angle for each type of sensor was included
to evaluate the ability of the filtering process to estimate sensor
misalignments. Since the purpose of the simulation was to validate
the data reduction method, a sufficient number of states were included
to represent all the basic types of fixed and irst-order terms usually
determined from a physical calibration process; however, the total
number of states was limited to keep the complex task of structuring
and analyzing the filter tractable.

Prior to an Inertial Navigation System test, a sequence of com-
ponent tests is performed during the development phase of the plat-
form. This implies that the basic structure of the sensor models
should be fairly well defined before the platform tests are conducted.
Since one of the main purposes of the simulation was to validate the
linearization and determine the effect of the Av approximation con-
taired in the ® and H terms of the gain computation, Eq. (4.52), no

additional modeling errors were considered elsewnere in the flter,
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In other words, it was assumed that the model used to generate the
measurement data and the model contained in the state and measure-
ment dynamics of the predicted filter loops (reference Figure 4. 3)
were identical. This does not imply that model inaccuracies will not
exist in the physical application of the algorithm. In fact, as dis-
cussed by Jazwinski in Chapters 7 through 10 of Reference [17],
model inaccuracies can cause serious degradation or divergence of
the filtering process. An example of the degradation caused by
including the Av approximation in the measurement prediction loop,
rather than the gain computation, is shown in the simulation results.
However, additional investigations of the effects of modeling error
are recommended for future study.

Two additional simplifying assumptions were made with respect
to the platform rate equation, Eq. (2.33). The internal gyro torquer
scale factors were assumed to be unity, to limit the number of states
in the simulation, and, finally, the servo error term was assumed to
be zero. The servo error term is considered to be a deterministic
quantity, whose value is obtained from a servo analysis and test of
the platform stabilization loop.

The siymulation equations are obtained from a combination of
Eqs. (3.25), (2.33), and (2. 34). Section B, 1 of Appendix B shows
that the contribution of the Group 2 terms of Eq. (3.25) can be
neglected, and, since the centrifuge is nonoperating for the i-g
calibration, the applied acceleration equation reduces to

s

A - C;CEGC (5.1)
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where

C‘: - is the Euler transformation matrix given by kq. (4.1)

] C?® - is obtained from Eqs. (3.19) and (3.20) with the rnis-
alignment angles defined in Table 5.1

G€ - is defined by Eq. (3.25) with g = 1

Equation (5.1) gives the acceleration applied to each gyro, which is

L &

used, along with the states designated in Table 5.1, to obtain the

following set of platform rate equations from Eq. (2.33):

wxp = eXy - Xy E13 + X4 X454 E33 - TGX
t - EiZ WEC - E13 WES

Wep =Xy Xqg T X3 % Eyg +xy5 TG - x5

-x¢ E33 - TGZ - E;, WEC - E,, WES
where

. E12 = CXy9 8X4p CX (g + 8X - SX g

Ej3 = cxyq 8Xyq 8X 5 - 58Xy, CXyg
! E,, = cXq¢ Xy [Reference Eq. (4.1)]
i

Epg = cxyq 8%

Ejp = 8%(7 8%y €Xyp - CXyq 85X, ¢
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Eiq = SXyq 8X ¢ SN g tox g CXy¢

WEC, WES - are the earth rate com?m\cnts defined ;-5 Eq. (3.3)

and represented in wr [See Egq. (3. 17)]

1r

TGX, TGY, TGZ - are the gyro command torque values of
Eq. (2.33)

With the platform rates defined by Iq. (5.2), we can define the

state vector equation directly from Eq. (4. 8).
x = [(x) + w(t) {5.3)
where

[
x and w are {7-eclement vectors

f(x) - 1s a {7-dimensional vector-valued function

The only difference between Eq. (5.3) and Eq. (4.8) is the dimen-
sionality of the equation and the fact that f is not an explicit function
of time. We know from Section 4 that the first 14 elements of { are
zero, and the last three elements contain the dynamics of the system

platform rates.

f15 = (wx €OSs X e ""zp sin x17)/cos X6
[16 = wzp Cos Xy - wxp sin Xyq (5.4)

fio = (wxp cos xy, sinx .+ o sin x4 sinx  )/cos x4, T W

yYpP




The statistical description of Eq. (5.3) is identical to Eq. (4. 8) with
the dimensionality adjusted irom 63 to 17.

The measurement equation is obtained in a similar manner as
the state equation. Starting with Eq. (5.1), we obtain the acceleration
applied to each accelerometer, which is used in conjunction with the
states designated in Table 5.1 to obtain the following set of equations

for the elements of h[}_(tn)] from Eq. (2.34):

hi = x7(tn) it xlO(tn) E13(tn) = xio(tn) x14(tn) E23(tn)
h2 = x8(tn) + Xy 1(t:n) E23(tn) (5.5)

hy = xg(t ) +xy,(t ) Egslt )

The measurement equation is identical to Eq. (4. 14) with h[.’ﬁ(tn)]
defined by Eq. (5.5). Note that h is not an explicit function of time

|
n

5.2 MEASUREMENT SIMULATION

This section contains a description of the part of the simulation
program that generated the measurement data. Table 5.2 contains a
list of the mean values Xo; and standard deviations o'xoi, used in the
gaussian subroutine program to formulate the initial state vector

_)_c(to). Since the simulation values are considered the true state

values, we will define x(t) to be

x(t) 8 (5. 6)

X X .
—true ~—Ss1lm
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The mean values are representative of the sensor coefficients and
misalignment magnitudes obtained from actual calibrations performed
on the Carousel VB Inertial Measurement Unit. The standard devi-
ations were chosen to be representative of the Carousel VB 1-s'gma
error budget [10] given in Table 5.3. The error budget represents
measured uncertainty from a combination of sensor and platform
calibration datz taken over 90-day intervals. Since the error budget
uncertainty represents charges from the last calibration, in addition
to calibration uncertainties, both the repeatability effect and operating
random changes discussed in Section 4.3 of Section 4 are included in
the error budget. Comparing Tables 5.2 and 5.3, we see that the
major portion of the error budget was included in the initial state
deviations, which represent the lack of repeatability from turn-off to
turn-on, plus the operating disturbance input up to the start of th«
calibration at t = to’ as described in Section 4.3, From experiernce,
the repeatability effect is usually the major portion of the error budget.
It should be noted that the mean value of the Euler angles represents
the initial alignment error of the platform with respect to (east, north,
up); this corresponds to the (xp, yp, zp) platform axes, which, in turn,
correspond to the (@, y, B) Euler angles. The Euler angle standard
deviation, in conjunction with the disturbance process deviation, to be
given later, represents the uncertainty associated with the platform
stabilization loop.

Table 5.4 contains a list of the standard deviations for the

zero mean, gaussian white, disturbance process w(t) of Eq. (4.8) and

the zero mean, gaussian white, measurement noise sequence m(tn) of




d@s-dae ¢,y
,3/naaw 1300
Nm\s.uwrc 802 °0

3/nadw gg-1 - ¢z

nIdW €579 - 07

Jd9s=-dae ¢

J9s-d31® 57

Ajutelaasupn vwidig-g

ydtuLdire sixe (adug

»ouriidiuco srxe-seo Sl
PoueIdLuod sixe-u]

3314p edurieqU

FLID DOSL g

peey

(I0SUds yde3a) oxin

wawude sixe jnduy
d1030®) aredg

selg

AkOmcwm Uyoea) hw.“whﬁo.u..vﬂnvo.\..d«

(s9xe £ % x) 134937

(sixe - z) yiniuizy

PPTIINY feniug

m@Ukﬁow 10x1a73

198png 1oaaqg ewidig-1 gA [ssnoaen ‘€ g a1qe L

128



J3s-dae 0°S Ll

>3s-da® 0°s 91

J9s-23% 0°¢ g1

J3s-dae 0°1 ¥

Jas-dae " | 1

8/8 oL A

/3 s 3]

3/8n 0°¢ 0l

8n 0°'9 6

3 0°F 8

an 0°¢ L

8/nasw 9°'0 9

8/n1aw S0 c

8/naaw ¥°0 F

22s-3n 0°¢€1 € nasw ¥°0 €

das-3Iv 0°€1 2 nxaw S0 4

29s-3n 0°'¢€l 1 nasaw 9°0 i
situpn »E.B Uo1jelAd(] piepuelg = ..woM/WoZ sjtun ,,Bbv uoljelrAd( piepueig il vu:.“ﬁ.:,pmmﬂ

ju2IlansEI Y

9S1ON JUSWIJINSEIW pu® IdUBQINISIJ JO SUOIIBIADI(Q PIepuUeRIS

‘b9 2iqel

129



Eq. (4.14). From test experience, a good approximation of the
magnitude of the operating randoni uncertainty in sensor parameters
is 10 percent of the repeatability uncertainty. Therefore, the values
of oy, through Twig4 2TC 10 percent of the associated Tx; given in
Table 5.2, The deviations associated with the Fuler angle distur-
bances (w15 thru w, .) were set equal to the initial state deviation
values (crx15 thru (rxn), since they are both associated with the
stabilization loop uncertainty. The Carousel VB error budget distur-
bance represents the measured uncertainty over a 24- to 48-hour
continuous test program. The assumption made for the simulation
was that the disturbance represents the uncertainty over the cali-
bration test time, which is established by the length of time the
command torquing is applied. 'The prespecified command torque
profile time was 3 hours and 39 inutes or 13,140 seconds. Since
the measurements were generated at discrete time points, tn' the
disturbance added each At measurcement cycle was obtained by scaling

the total disturbance standard deviation by

Tw; = VK Oy, I & A8 . ¢ ST (5.7)
where
O."”i - is the standard deviation of the disturbance added
each measurement cycle
k = At/13140
ow. - is the total disturbance deviation and are the values

listed in Table 5.4




Equation (5.7) holds, since w(t) is gaussian white and therefore time
independent. Independence implies that the sum of the variances of
cach measurcement cycle equals the total disturbance variance. The

number of measurement cycles is 13140/At or 1/k. Therefore,

(og;)
2 o bz @) )P 4 )Pt ... (4 terms) (5.8)
i i i

and Eq. (5.7) follows. The equations of the first 14 sensor para-
meters are in discrete form in the measurement simulation and are

represented by the following example of the first parameter DFX'

Dexity) = Prx(tag) + wilt)

5.9
n=d;2,3, .., 13044

where w'i(tn) - is the scaled disturbance.

For the Euler angles, the disturbance is added after the dynamic

equations of Eq. (5.4) are integrated. For example,

a(tn) = a' (t ) +w’15(tn) (5.10)

where

15 [Reference Eq. (5.4)]
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w'ls(tn) - is the scaled disturbance

The measurement noise is based on the fact that the output of
the accelerometers is a series of Av pulses that are counted by the
platform computer over each measurement cycle., The pulse weight
for the Carousel VB is 0.002569 ft/sec/pulse. Converting this value
to local gravity units gives a pulse weight of 80.28 ng-sec/pulse,
where g - 32,124 fl/sccz. The total Av for a measurement cycle will
be some integral number of pulses plus some residual value of
velocity. If the residual value is greater than 1/2 of a pulse (i.e.,
greater than 40,14 pg-sec), then another pulse will be generated.

If the residual is less than 40.14 pg-sec, then no pulse will be added.
Therecfore, the error in Av will be somewhere in the range of 0 to
40.14 pg-sec. The assumption is that the maximum error of 40, 14
pg-sec is a 3-sigma value: hence, a I-sigma deviation for each
measurement cycle would be 13 pg-sec, which is the value shown in
Table 5.4. Note that, since the uncertainty in Av occurs each cycle,
there is no scaling of the measurement noise. The discrete form of

the measurement equation used in the measurement simulation is

Av(t ) = Ay (t )+ mt ) (5.11)

where

P
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h - is defined by Eq. (5.5)

We now sce that the units given in Tabie 5.4 are compatible with the
measurement simulation discrete equations,

After some preliminary runs of the simulation, a measurement
cycle of At = 1.0 second was selected in conjunction with an integration
step-size of 0.25 second. The method of integrating the state and
measurement dynamics was 4th-order Runge-Kutta. It was found
that increasing At degraded the Euler angle estimates, and decreasing
it showed little improvement compared to the increase in measure-
ment processing. Based on a nominil platform rate of 4.7 X 10-4
rad/sec (see Section B.1 of Appendix B) implies that measurements
were taken every 1.62 arc-minutes of platform angle.

Figure 5.1 contains a flow diagram of the measurement simu-
lation program. Block 1A sets up the initial state vector §(to) for
the measurement simulation using the values of Table 5.2. The filter
initial conditions brought in at Connector 3 are covered in the next
section. The do-loop to Statement 499, located at the end of the flow
diagram, is the major simulation loop that establishes the number of
measurements N the filter will process. The first measurement
occurs at time t, where ty -ty = At = 1.0 second, implying that zero
measurements will be processed when M =1 and 13, 140 will be
processed when M = 13,141, Therefore, the maximum value of M
permits the filter to process measurements over the entire torque
profile time of 13,140 seconds. The results will show that filter
convergence was occurring around 6200 cycles. The command torque

generation block is given in detail in Figure 5.2, Initially, the
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cornrnand torque profile consisted of a sequence of maneuvers that
placed each axis of the platform either vertically up or down, so that
the maximum 1-g acceleration would be applied to each sensor. The
torquing sequence required 13, 140 seconds to complete the total
profile. Since the filter was converging in less than one-half the
torque profile time, the profile was modified to see the effect of
applying a step-type torque program prior to filter convergence.
Figure 5.2 shows the final form of the torque program. It should be
understoocd that no attempt was made to optimize the torque program
with respect to filter performance. Optimization of the torque pro-
file will be discussed in Section 7 and is recommended for future
study. Maximum command torquing of platforms r ages from 6 to
10 eru (earth-rate-units), since the basic use is to provide precise
torquing during gyrocompass alignment procedures. In the case of
the Carousel VB, the maximum command torque rate is 6 eru.
Neglecting platform motion due to error drift and earth rate input,
the first loop (N = 2600 with At = 1) applies 6 eru along the negative
xp and yp axes [note the sign convention of Eq. (5.2)], which drives
the platform from the initial (east, north, up) alignment to an

orientation where the zp axis is horizontal, the xp axis is 45 deg

above the horizontal, and the yp axis is 45 deg below the horizontal.
The second loop, 2600 < N = 4400, applies 6 eru along the positive
zp axis to drive the Yp axis to a position of vertically down. The
remaining loops maintain 6 eru along the positive 5 axis and step

{ eru of torque rate into both the negative xp and yp axes every 100

cycles, until a maximum of 6 eru is applied. The maximum torquing
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along the three axes is maintained for the remaining measurement
cycles.

Block 2 generates w(t) and m(t) using the values in Table 5.4.
Block 3 formulates the sensor parameter equations represented by
Eq. (5.9). Blocks 4 and 5 are 4th-order Runge-Kutta integration of
Eqs. (5.4) and (5.5), respectively. As mentioned previously, the
integration step-size was 0,25 second, implying that J = 4 in the
integration do-loop. Block 6 formulates the Euler angle and Av
equations represented by Eqs. (5.10) and (5.11), respectively. The
check for 8 within bounds stops the simulation if B is approaching the
singularity condition. The filter is first entered at Connector 1. The
Av measurements are input to the filter algorithm at Connector 2.
The return from the filter for the next measurement data cycle is
accomplished at Connector 4. Statement 497 completes the major
do-loop cycle. The iterations are complete when N equals the preset

M value.

5.3 FILTER ALGORITHM
A flow diagram of the filter algorithm is contained in Figure 5. 3.
The filter equations of Section 4 are reformulated into a function of
the measurement cycle variable N; where the Nth cycle occurs at
time t the N-1st cycle occurs at time tn_1 and tn'tn-l = At = 1

second,

Define

X(N-1) =%(t__ [t () (17 X 1) filtered state vector at time t __,

x(N) = i(tn|tn) (17 X 1) filtered state vector at time t
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SET UP INITIAL =
CONDITIONS 40
FOR FILTER
BLOCK 11
3 COMPUTE P(N) FROM
EQ (5.19) AND THEN
r— _ COMPUTE A(N) FROM
1 EQ (5.20)
—/1=1, K_D@ 30 _4
B BLOCK 7 ¥ BLOCK 12
COMPUTE %*(N) COMPUTE PIN) FROM
I FROM EQ (5. 16) EQ (5.21) AND STORE
| FOR NEXT CYCLE
| |- | o
I COMPUTE 4¥(N) ¥ BLOCK 13
USING VALUES OF
| %‘L(N KFBIORAND COMPUTE FILTERED
ESTIMATES X(Nj
l EQ (5.17) FROM EQ (5.22)
R
RETURN TO
MEASUREMENT
SIMULATION
HPF = 0 HPF = | | LOOP
FPF = 0 FPF = |
BLOCK 9A BLOCK 98
EVALUATE F(N-1) e | G |
AND H(N) AT EVALUATED AT
X(N'” AND X * (N) Q(N-” AND i'(N) o L o b o« Sttt Y Lot
USING ANALYTIC USING NUMERICAL ’ PRaGr. SR i
PARTIALS PARTIAL ROUTINE LR N RN, x, 6o, -
r L | AN), PIN-1), 4v,
f § BLOCK 10 | A el TRy
COMPUTE o S '
N, N-1 b O
AND "N, N-1] ) |G B Vs wygps Wyps Waps
FROM EQs (4.24) Rh| fes
AND (4. 29) e . /
RESPECTIVELY L
_——/

———

INTEGRATION STEP-SIZE = gif

Figure 5.3. Flow Diagram of Filter Algorithm




~% -~ -
x (N) x(tnlt (17 - 1) predicted state vector

n-1)

Av(N) - (3 X 1) measurcment data vector from measurement
simulation program

AV(N) - (3 X 1) predicted measurement vector
A(N) - (17 X 3) Kalman gain matrix

F(N-1) = Flx(t 1|tn-i)] (17 ¥ 17) matrix of state dynamic
PE partials

H(N) = H[i(tn|tn_1)] (3 X 17) matrix of measurement dynamic
partials

®(N,N-1) = &t ,t ;i x(t |t ] (17 X 17) state transition
matrix

I'(N,N-1) = r('tn’tn-l; ;{(tn-l Itn-i)] (17 X 17) distuy.h-\ance .
transition matrix

P(N-1) = P(tn-iltn-l) (17 X 17) filtering error covariance matrix
at time tn-i

P(N) = P(tnltn) (17 X 17) filtering error covariance matrix at
time t
n
P(N) = P(tn|tn_1) (17 X 17) prediction error covariance matrix

Q(N-1) - given (17 X 17) disturbance covariance matrix

3k
R (N) - given (3 X 3) measurement error covariance matrix
Xo - given mean value initial state vector (17 X 1)

Po - given initial state covariance matrix (17 X 17)

Block I B of Figure 5.3 establishes the initial conditions for the
filter. The initial filtered estimate is X(0) = X,. Since we assume
that we do not know the mcan value of the initial state vector, X,
represents our "'best guess''. Jlow far off the ""best guess' can be
from the true mean value (given in Table 5.2) and still have the filter

converge to its steady-state condition, indicates the stability of the

calibration filtering process with respect to the initial state condition.




T <SR

A number of values of X, were used in the simulation and are given in
the next section. The initial value of the filtering e¢rror covariance
matrix is P{0) = P,. Pg is the initial state covariance matrix defined
in Eq. (4.8). Again we assume we do not know Po. Examining Iq.
(4.52) shows that, since Q is usually much smaller than P, P is the
predominate factor in determining the initial gain of the filter. If

P(0) is too large, then the gain level is placing too much weight on the
initial "poor'" estimates. This causes the filter to operate inefficiently.
If P(0) is too small and the initial state uncertainty is large, then there
is insufficient gain to make the nccessary corrections which can cause
the filter to diverge, since the linearization is no longer valid. In the
case of Q, Eq. (4.52) shows that, when the filter is near convergence
and, therefore, P is close to zero (since the Kalman filter is a
minimum variance filter), Q becomes the predominate factor in
determining the filter gain. If Q is too small, then the gain is essen-
tially zero, and this, in effect, decouples the filterel estimates from
the measurement data, as can be seen from Figure 4.3, when

A(tn) = 0. If Qis too large, then the uncertainty level of the steady-
state filtered estimates will be too high. The easiest initiel factor

to determine is R*(l), since it is directly related to the accelerometer
output uncertainty.

A common practice in applying a filter is to assume P(0). Q(0),

and R*(l) are diagonal matrices, because of the difficulty in guessing

initial off-diagonal covariance elements. The second assumption is

that Q and R are statiorary. In other words,




Q(N-1) = Q(0)

S :,, for all N > { (5.12)
R (N)= R (1)

Some preliminary simulations were performed to establish

initial values for P, Q, and R:' based on the general filter perform-

ance, The value of 5(0) selected was a diagonal matrix whose

elements are

2 ;
pii:zax LT S T | (5.13)
where

o'xoi - are given in Table 5.2

The value of Q(0) selected was a diagonal matrix whose elements are

2 &

-4 b e, IF (5. 14)
1

qii=20'

where

Tw; = are given in Table 5.4

And, finally, the elements of R*(i) are

rij = Om; i=1,2,3 (5.15)
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where
Umj - are given in Table 5.4

No attempt was made to optimize filter periormance by varying

P(0), Q(0), and R".(l). This is also recommended for future study.

In Blocks 7 and 8 of Figure 5.3, 4th-order Runge-Kutta
integration was used with a step-size of 0.25 second. The integrals |

for ;c*(N) and AV(N) are both from Eq. (4.51).

{

* n
% (N) = X(N-1) +/ x|t _plat (5.16)
ta-t
|
b -
n
AV(N) =f hixe]e _q)lat (5.17)
t
n-1

Note that, in Eq. (5. 16), there are only three elements of f that
require integration. The elements of f are defined in Eq. (5.4).

Since the first 14 elements of { are zero,

k(N) 2 %,(N) 1=8,8,...,04 (5. 18)
In other words, the filtered estimates of the first 14 states are
identically equal to their predicted estimates. Therefore, in Eq.
(5.2), which defines the platform rates for Eq. (5.4), the {irst 14

states are evaluated at their filtered estimates. The Euler angle

states are the only variables in Eq. (5.16) that are integrated forward




in time. Since the predicted states %" (N) are obtained from Eq.
(5.16), Eq. (5.17) is simplified, since the h function is now a constant
function over the integration step-size interval and is obtained by
evaluating the elements of h [ reference Eq. (5.5)] at the predicted
state values obtained from Eq (5.16). Therefore, Blocks 7 and 8 are
integrated simultaneously.

Block 9A is simply an evaluation of the partials of F(N-1) and
H(N) at x(N-1) and i*(N) respectively. The analytic partials are
contained in Section C.1 of Appendix C. Block 9B is a standard
numerical partial subroutine. The elements of f and h are evaluated
at x(N-1) and i*(N), respectively, which establishes the nominal
value of the f and h elements. The value of each state is varied by
some specified increment and the perturbation of the f and h elements
about their nominal values is numerically equivalent to the value of
the partial of that element with respect to the incremented state.

Since F(N-1) is not an explicit function of time, the power series
solution of Eq. (4.24) can be used to obtain &. Likewise, I'can be
obtained from its power series solution of Eq. (4.29). A value of
m =4 was used in both power series solutions.

The equations ‘or Blocks 11,12, and 13 are from Eq. (4.52).

Expressing them in terms of N gives

P(N) = &(N, N- 1)B(N-1)8 " (N, N-1)

+ T(N, N-1)Q(N-1)T T(N, N-1) (5.19)

AN = PN HIMN[HN) P HTN) + RF )Y (5.20)
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P TP

TINY 1= AN HONT PN L= AN HN) T

FAN) RO(NY A NN (5.21)

%(N) = % (N) + A(N) [Av(N) - AF(N)] (5.22)

Note that Av(N) is input to the filter at Connector 2,

In order to evaluate the effect of the Av approximation, an
alternate filter, shown in Figure 5.4, was used. The alternate filter
contains the Av approximation in the predicted measurement loop.
The measurements from the simulation were averaged over the
measurement cycle to give an average acceleration value. This
permits the h equation evaluated at i(tnltn_i), which is equal to
A:V(tn]tn_l), to be compared directly with the average acceleration
measurement, AV(tn). Note that, for this filter, the R::‘ and H terms

of Eq. (4.52) no longer contain the At expressions.

5.4 SIMULATION RESULTS

There were two basic evaluations of the 1-g simulation per-
formed. The first evaluation consisted of four simulation runs to
determine the filter performance with respect to the initial state
estimate %(0) rio. In each case, the vector difference between the
initial guess '520 and the true value of the initial state mean X, given
in Table 5.2, was increased. The second e¢valuation was a compari-
son of the results obtained from the basic filter of Figure 4.3 and the
alternate filter of Figure 5.4. The comparison was made to show the

effect of the Av approximation on filter performance.
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For the first evaluation, Table 5.5 shows the value of the initial
guess X for each state variable. Except for the accelerometer scale
factors, which were assumed to be 1 X 106 ng/g for each simulation
run, the other 14 elements of X, were varied by a percentage of X,
Determining whether the percent variation would be above or below the
true value of x  was done by random choice (i.e., a flip of a coin),
except for the 100-percent case, where all values except the scale
factors were set to zero.

The results of the 10-percent case are given in Table 5.6. X is
the filtered estimate and x is the true or simulated value of the state
associated with the 6200th measurement cycle. The estimation error
X = x - X is either below or approximately midway in the Carousel VB
error budget range for every sensor parameter. The standard devi-
ation column ¢ is the square root of the diagonal elements in the
filtering error covariance matrix P. From Eqs. (4.42) and (4.46),
we sce that P is associated with the state perturbation sequence

6x(tn). Therefore, an expression for the filtering error is

6?c'(tn|tn) = 6x(tn) - éi(tnltn) (5.23)

If the perturbations are ''small', then, from Egqs. (4.40) and (4.49),

we see that

bx(t ) = x(t ) - x(t |t )
(5.24)
sx(t [t ) =x(t [t )~ x(t |t )
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Substituting the equations of Eq. (5.24) into Eq. (5.23) gives

BR(t |t ) = x(t ) - &(t |t )= % (5.25)

Since the mean value of X is identical to the mean value of x, taking
the expectation of Eq. (5.25) would show that the filtering error and
therefore the estimation error sequences have zero means. Hence,

a comparison of ¥ (i.e., x - X) with o should give an indication of how
well the filter is performing with respect to the validity of the lineari-
zation and the effect of the Av approximation. A comparison of X and
o in Table 5.6 shows that, except for Koy and Ky, the filter appears
to be performing quite well. This question still remains, however:
what is causing the degradation in the above parameters? One logical
conclusion is that either the Av approxin.ation or linearization is
affecting the estimates of KOY and K1Y or possibly the value of Q is
too high for these terms, as discussed in the last section.

Most textbooks on estimation theory discuss the value of the
diagonal terms of P (which are equal to 0'2) in assessing the filter
performance. If the variance terms are getting smaller with time,
the estimates will approach an optimal value for a linear application.
A question arises as to whether the off-diagonal terms contain any
information in regard to filter performance for linear or nonlinear

applications. As mentioned in Section 4, one concern of the calibra-

tion problem was observability. Because of this, the computer




printout of the P matrix was restructured to give the standard

deviation along the diagonal and the correlation coefficient p of each
estimation error state, with respect to every other state, in the off-
diagonal terms. The correlation coefficient Pi between two random

variables x; and X; is [18]
Py = il (5.26)

where

cov(xixj) - is the covariance of X, and xj

0= |pij|51.0

The result of restructuring P provided an excellent basis for
studying the interrelationships and influence patterns that exist between
each estimation error state.

Table 5.7 gives the accelerometer parameter correlation pattern
for the three sensors. The correlation coefficient values are from the
restructured P matrix for the 6200th measurement cycle. The reason

for the degration of Kyy and K, ,, now becomes apparent from the

1Y
value of 0.94 for their correlation coefficient. In other words, the
filter is having difficulty distinguishing between them. Since they are

both gaussian random variables their associated ?c'i are gaussian, and

hence correlation implies dependence [16]. An examination of Eq.
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(5.5) corfirms this fact. The relationship of K ) and K

oy ¥g 1y
is contained in the h2 equation., The torque profile is driving the y
axis of the platform from horizontal to -90 deg. As the ¥p axis gets
close to -90 deg, the change in the contribution of the E,; term {(which
represents the amount of applied g) beconies very small, because of
the sin a(a = x15) term. This means that the K, + V’iY E23 term
"lnoks like' a single hias term, in cther words, a lincar combination
of two constant terms. ! is not until @ is of such magnitude that y_is
close to the horizontal that the change in E,5 becomes large enough
for the filter to distinguish between the two terms, which implies a
decrease in p. Note thatp = Xy is usually less than 20 deg, so that
cos P is close to 1.0. The following list of @ versus p (for KOY and
KiY) taken from simulation data shows the change in correlation as a

function of the torque profile.

12
o

K e i S EA

0° 0,0033
78" 0.52
-90° 0.79
L -106° 0. 97
-169° 0.94 (N = 6200)
-223° (43° above horizontal) 0.71

! We now see how command torquing can be used to offset the observ-

ability problem.
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Based on the above, it is concluded that the degradation of the

estimates of KOY and K1Y

thar the linearization or Av approximation. Hence, the results show

is due to the observability effect, rather

that the linearization is valid and the effect of the Av approximation
in the gain computation is minimal. The important point is that the
off-diagonal terms have provided a new dimension in assessing filter
performance.

Table 5. 8 contains the results of the 30-percent case. Since
the correlation pattern of Table 5.7 also holds in this case, we see
how the observability effect has again degraded the estimates of KOY

and K It is interesting to note the improvement in the estimates

1Y’
of "xo and q;,q for the 30-percent case compared to the 10-percent
case.

Comparing the X results of Tables 5.6 and 5.8, we see that the
estimates for le are essentially the same, but the estimate for KOX
has improved X by approximately two-thirds. The improvement in

K has an effect on ¢Xi, as shown by h1 of Eq. (5.5), and therefore

0X
the estimate of q‘"i should improve. The same holds true for Mxo*
which is related to Dy and DIX' The X results show that the esti-
mates of DFX are essentially the same, but the estimate for DIX

has improved X by a factor of four. Equation (5.2) shows that an
improvement in DIX should improve the estimate of MTxg

The results of Table 5.8 show, once again, that the linearization

is valid and the effect of the Av approximation is minimal. Even with

the slight degradation in the estimates of KOY and KIY' the estimation
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error of each sensor parameter is below or within the Carousel VB
error budget. Component tests are conducted, in addition to prelimi-
nary platform checkout tests, prior to the i-g calibration, implying
that knowledge of the sensor paramete~ -.agnitudes should be within
30 percent for establishing an initial guess X,. Therefore, the 30-
percent case should be quite representative of an actual laboratory
calibration program. It should be noted that for both the 30-percent
and 10-percent cases, the total filtering time was slightly over 1 hour
and 43 minutes. Platform calibrations being performed for industrial
and military applications require 24 to 48 hours to obtain sensor para-
meters. Keeping in mind that the results given here are based on
simulated measurement data, the reduction in calibration time still
appears significant.

Table 5.9 contains the results of the 60-percent case. Since we
know from the last case that the filter converges to within the error
budget from an initial condition of 30 percent of x_, our only concern
here is that the estimates are at least within 30 percent of x. Hence,
instead of the error budget column, a "% of x"" is shown. We see that
all the parameters, except the misalignment angles, are within 10
percent. The angles are within 28 percent. As indicated by the
asterisk, eight of the 14 parameters are within the error budget.
Notice that the filtering time is only 7 minutes longer than the 10-
percent and 30-percent cases. The P variances indicated that the
filter was still converging at the final cycle.

The results of the 100-percent case are in Table 5.10. The

filtering time was increased by approximately 17 minutes over the
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60-percent case. The results show that nine of the 14 parameters are
within the error budget and four of the last five are very close to the
error budget. All parameters are within 23 percent of x. The impor-
tant point about the 100-percent case is that it truly represents a
worst case condition, since we assume no knowledge of the sensor
parameters for the initial condition. The results of the 100-percent
case indicate that the 1-g calibration problemn is quite stable v ith
respect to the initial state estimate.

The second evaluation consists of a single simulation run of the
alternate fiiter of Figure 5.4. All the conditions of the 30-percent
case of the basic filter were duplicated, so that the only difference
was that the Av approximation was removed from the gain computation
and located in the measurement prediction loop, as shown in Figure
5. &, .The results of the alternate filter are shown in Table 5.11, along
with the results obtained from the basic filter, which were extracted
from Table 5.8. A comparison of the estimation error values shows
that the Av approximation in the predicted measurement loop definitely
degrades filter performance. Note that {ive of the alternatu filter
parameters are within the error budget. It appeared that there was a
remote possibility that the alternate filter would converge; however,
the loss of filtering efficiency is apparent. Note the difference in the
estimation error for the Euler angles. The alternate filter is obviously

not tracking the platform nearly as well as the basic filter. This

concludes the 1-g simulation results.

.




Av Approximation

Table 5,11, Comparison of Basic and Alternate Filters for

Units

meru
meru

meru

meru/g
meru/g

meru/g

Hg
Hg
HE

ng/g
neg/g
ne/g

arc-sec

arc-sec

arc-sec
arc-sec

arc-sec

State X of X of
Variable Basic Filter Alternate Filter
t Dpx 0.998 25,877
Dpy 0.553 8.079
Dpy -0,235 -10.311
Dix 0.058 90.223
Dy, 0.860 110,043
Kox -4.506 -21.171%
Koy -68, 685 -128.034
Koz -3.001 -7.856™
Kix -16,57 -54,03%
Kiy -74.09 -155,81
Kz -21,98 -18.79*
} Nx, 0.244 0.608*
thi 0.852 15,157
-17.70 -634.69
102,22 9230.82
24,46 1825,49
N = 6200 cycles Time = | hr 43 min 20 sec
>ﬁIndicates parameters of Alternate Filter where X is within
error budget.

ot s civssssttet I it et
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SECTION 6

SIMULATION OF A CENTRIFUGE CALIBRATION

The results of a 10-state simulation of an operating centrifuge
calibration are given in this section. The measurement data was gen-
crated by simulating the platform motion due to error drift, earth-rate
input, and a prespecified command-torquing profile for the centrifuge
operating at the 10-g level. The basic purpose of the centrifuge simu-
lation is to determine the ability of the filtering algorithm to identify
and estimate the higher-order error coefficients. In addition to the
above, the program was formulated into three different options to
permit an evaluation of the various types of fixed and first-order

coefficients in combination with the higher-order terms.

6.1 SIMULATION STATES AND EQUATIONS

The nine sensor parameters and three Euler angles considered
for the centrifuge simulation are defined in Table 6.1. The first four
state variables are fixed and first-order error coefficients that are
combined with the higher-order coefficients in three program options
to be defined later. Thnese coefficients were included for two reasons:
first, to determine how well the data reduction technique obtains
estimates of the fixed and first-order coefficients in the centrifuge
environment: seccnd, o determine if an observability problem exists
between the lower- aid higher-order coefficients, which would degrade
the estimates. State variables three through nine are the second- and
third-order gyro ani acceleroineter coefficients. Note that representa-

tion of both in-axis anc cross-axis second-order terms for both sensors

Preceding page blank
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has been included along with the accelerometer cubic coefficient. The
last three state variables are the Euler angles required for platform
tracking. As was the case for the | -g simulation, the purpose of the
centrifuge simulation was to validate the data reduction method.
Therefore, a sufficient number of states were included to represent
all the basic types of higher-order coefficients normally determined
from a physical centrifuge test; however, the total numbe1 of states
was limited to keep the complex task of structuring and analyzing the
filter tractable.

All the sensor misalignment angles were assumed to be zero and
the torquer scale factors were assumed to be unity to limit the number
of states. For the reasons given in Section 5.1 of Section 5, the
models contained in the state and measurement dynamics of the pre-
dicted filter loops were assumed identical to those used to generate
the measurement data, and the servo error term of Eq. (2. 33) was
assumed to be zero.

The state variables for each of the three program options are
given in Table 6. 2. Since only 10 states were evaluated for ?ach
option, the first column of Table 6.2 merely shows the location of the
specified state variables in the 10-element state vector x(t). In other
words, for the Basic Option: X3 is the first element of the state
vector, Xy is the second element, and so forth. All equations in this
section will be in terms of the state variables of Table 6.1. The
analytic partials, contained in Section C. 2 of Appendix C, are in terms
of the same state variables. So that there is no confusion, any time we

are referring to the subscripted variable X, it will be clearly identified
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in the text material whether we are referring to the state variables of
Table 6.1 or to an element of a state vector such as x(t), g(t), or g*(t).
For example, in Section C. 2, the analytic partials of the state function F
are evaluatcd at the filtered estimate x. Since the analytic partials are
in terms of the state variables, Table 6. 2 shows that, when we evalu-
ate F for the Basic Option, we replace the state variable X3 in the
partial equations with the first element of the filtered state vector ;(1 .
This is shown in Appendix C by the defining equation x3 = ;‘1' which
means replacing state variable X3 by the first element of the filtered
state vector.

Since the major portion of the platform error drift is due to the
contribution from the fixed and first-order terms, those terms that
were not designatcd as state variables were added to the simulation as
constant inputs, so that the platform drift is representative of the
actual magnitude expected during a centrifuge calibration. The input
constants common to all three options are shown in the first column

of Table 6.3. Note that D rather than DIZ was arbitrarily chosen to

oz
represent the mass unbalance term for the Z gyro. In addition to the
above, those state variables not included in a specific program option
were also set equal to a constant value, as shown in columns two
through four of Table 6.3. In other words, for the Basic Option, state
variables X, and X, are not used in the filter state vector; therefore,
they were set equal to the constant values specified in column two.
Hence, any time an equation contains the symboled form of the sensor

parameters (i. e., DFX' KOX' etc.), the constant values of Table 6.3

are used. For example, in the expression
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Dpx + %3 a4

x., refers to the state variable of Table 6.1, and DFX refers to ‘he

3
constant input value of Table 6. 3.

To obtain the simulation equations, we need to identify the charac-
teristics of the centrifuge coordinate transformations defined in t~c-
tion 3. The first assumption concerring the centrifuge is that we have
perfect counter-rotation such that the system platform is completely
isolated from the centrifuge rate. This implies that the misalignment
angles and speed variations of both the main and CRP spindles and
drive systems, respectively, are zero. Second, we assume that the
1 -pulse-per-revolution station is perfectly aligned with the East.
Third, we assume perfect alignment of the centrifuge main arm
centerline, CRP Xr axis, and the 1-pulse-per-revolution station.
Finally, we assume that the static and dynamic change in centrifuge
radius from its nominal value is zero.

The assumptions are not as drastic as they appear. As dis-
cussed in Section 3, the spindle misalignments, drive system varia-
tions, and the arm stretch are all measurable quantities obtained by
the various centrifuge systems discussed in Section 3.1. In the case
of the alignment of the centrifuge main arm, {-pulse-per-revolution
station, and the CRP axes, these are also quantities measured during
the initial platform iastallation and alignment phase. tence, all the
above quantities a-'ount to deterministic coordinate transformations.
Since our purpose is to validate the data reduction technique, nothing

is gained by complicating the platform rate equations with additional
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deterministic factors. Keeping in mind that our concern in the
calibration problem is nct that the system is isolated from the centri-
fuge rate, but that we are able to determine the amount of centrifuge
rate sensed by the system, so that we can account for this rate input
in the platform rate equations. The best approach to that problem is
to use actual centrifuge performance data to determine if the measure-
ment accuracy of the centrifuge systems is sufficient, and, in some
instances, verify that the assumed dynamic centrifuge models and
coordinate transformations of Section 3 are valid., The important
point is that the above approach is the next logical step to take after
having validated the data reduction technique with a tractable
simulation.

Based on the above assumptions, the following parameters for
the centrifuge coordinate transformations can be defined. Reference
Eq. (3.6), the misalignments are zero implying that B X (pyc = 0.
The {-pulse-per-revolution station is East, implying that the astro-
nomic heading g’ppr = 90 deg and therefore =L 0 for Eq. (3.7).
Since the main arm is aligned with the ppr station $, > 0: and f,wc = 0,
since the centrifuge rate W is constent. Therefore, the earth-to-

centrifuge transformatior, Eq. (3.9), reduces to

Ccos w t sinw t 0
C C
CC = {-sinw t cos w t 0 (6. 1)
e c c
0 0 1
168




Reference Eq. (3.12), oxr = 6 =0, since the misalignments are

yr
zero. Since Xr is aligned with Xc 60 = 0; and 6wr = 0, since the CRP
ratew = w_ is constant. Therefore, the centrifuge to CRP transforma-

tion, Eq. (3.14), reduces to

cos w t - sin w_t 0
c c
cf = |sinw t cos w_t 0 (6.2)
c c c
0 0 1

From Eq3. (6.1) and (6.2), we see that
Cz CZ =1 (3 x 3) identity matrix (6. 3)

Since the arm stretch is zero, &r of Eq. (3.16) is zero: this implies
that the centrifuge radius is equal to the nominal 260~inch value r,.
Finally, since the speed variations are zeroandw_ =w

co c"*
Eq. (3.17) reduces to

r r e
Wi = 16
ir e le

(6. 4)

Neglectiang for now the variations due to the three program
options, we obtain a general expression for the platform rate equations

using the state variables of Table 6.1 and the common input constants

of Table 6. 3.
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Combining Egs. (3.20), (6.4), and (2.33), with the misalignment

angles at zero, gives

wxp = -y - Xpapy - TGX - E'IZWEC = EBWES
— - 2 0
wyp z -DFY - DIYaIY = XS(dOY) = ARG = LZZWEC = E23WES

(6.5)
s E32WEC - h33WLS

From Eqs. (3.19) and (2.34), we obtain a general expression for the

platform acceleration

Ay =X, X2,y txgla, yilapy)
O S S VA P PR o (6. 6)
y = Koy * Biy2iay t %@y .
A, =K. +K &l "
E =0z 1z%MaAaz * *s\az

We now need to obtain exaressions for the applied acceleration terms
of Eqs. (6.5) and (6.6). Secction B.2 of Appendix B shows that the con-
tribution of the Group 2 terms of the applied acceleration equation,

Eq. (3.25), can be neglected. From the centrifuge assumptions e

know that

[ ]
AW " =W"=W "=20 (6.7)
(S} of ec cie
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Combining Eqs. (6.3) and (6.7), the applied acceleration equation

reduces to

AS - c8cP {2 wekc wekre 4 g® 4+ cTwekyckge } (6.8)
18 p r C ec Cr (5 ec ec Cr

From Eqs. (3.3), (6.1), (3.11), (6.2), and (3.25), the term in the

brackets { } of Eq. (6.8) can be reduced to

r
1
$ _ ~85.P
Ais = CPCr r, (6.9)
'3
where

£, & «w'l (86d @ t) - dw ¢ (WES)oos w i)
1 c o c co c
Tl (= -uzr (sinwt)-2wr (WES)(sin w t)
2 c o c c o C
ry = g + chro(WEC)(sm wct)

The expressions for Tys Tp and ry can be simplified, since we know
the centrifuge angular rate w_ at the 10-g ievel and the nominal radius
T, The components of earth-rate, WEC and WES, are defined by [
Eq. (3.3).

Given

w, - 3.8505554 rad/sec

r =260/12 ft
o

171



WES =3.95990552 % 10" rad/sec

WEC = 6.1232531 X 10”° rad/sec

= 32.1232531 ft/sec’ = 1 (g-units)
We convert the constants to g-units and obtain

= -Gl{cos w t)

—
!

1]

-Gi(sin uct) (6.10)

r. = 1.0+ G2(sin wct)
where

Gl

10.00020568 g's
G2

0.00031805 g's

Now Cg is the Euler transformation matrix and C; is the sensor
transformations defined oy Eqgs, (3. 19) and (3. 20), Therefore, we can

now solve for the components of applied acceleration,

IX T ?lax T 3g, = AX

Ay T ay = ag, = AY
(6,11)
31z = 3py = AL
aOY aPX = -AZ
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where

AX = -GI[E,  (cos w.t) + E,(sin wct)] + El3[1.0 + G2(sir uct)]
AY = -Gl[EZl(cos w,t) + Ezz(sin w t) + 523[1 .0 + G2(sin wct)]
AZ =

-GI[E31(cos wct) + E32(sin wct)] : - E33[1.O + G2(sin wct)]

Eij(1,3=1,2,3) - are from Eq. (4.1) with a = X0 B = X4

and y = X

From Eqs. (6.5) and (6.11) and Table 6.2, we can obtain the

platform rate equations for the various progiam options.

BASIC AND OPTION 2

wxp = -DFx - x3(AX) - TGX - EIZWEC - E13WES
OPTION |
wxp = eXy - DIX(AX) - TGX - ElZWEC - E13WES (6.12)
FOR ALL OPTIONS
wyp = -DFY - DIY(AY) - x5(AZ)2 - TGY - EZZWEC - E23WES
wzp = -DFZ - DO'/.(AX) - xb(AZ)(AY) - TGZ - E32WEC - E33WES

We see that only wxp is affected by the progran: options, With the plat-
form rates defined by Eq. (6.12), we can define the state vector equa-

tion directly from Eq. (4.8).
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x = L(x, 1)+ w(t) (6.13)

where

i and w - are 10-element vectors constructed according to
the options of Table 6,2
f{x,t) - is a 10-element vector-valued fuiiction constructed

according to the selected option.

The only difference between Eq. (6.13) and Eq. (4.8) is the dimen-
sionality of the cquation. We know from Section 4 that the first seven
elements of [ are zero, and the last three elements contain the

dynamics of the system platform rates.

- h S . " \
f8 (wx €Os X 5 4 uzpsm Xy /cos Xy
f9 = wzpcos Xy " wxpsxn Xy (6. 14)
£10 = (wxpcos Xy,8in X + wzpsm X, ,sin >.“)/cos X + uyp

The aqguation for o in Eq. (6.14) is basced on the program option as

shown in Eq. (6.12), The =statistical description ot Eq. (6.13) is

identical to Eq. (4.8, wita the dimensionality adjusted from 63 to 10,
The measurement c:(iuatx()ll tor the various program options is

obtained from Eqgs. (6.6) and (6.11) and Table 6,2.
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BASIC AND OPTION 1

hy= Ky, + x4(tn)[AX(tn)] £ x9(tn)[AX(tn) > AZ(tn)]

0X

OPTION 2

h, = xz(tn) + le[AX(tn)] - xg(tn)[AX(tn) ® AZ(tn)] (6.15)

|

FOR ALL OPTIONS

=
"

2
g " Koy # KIY[AY(tn)] + x7(tn)[AY(tn)]

' ; 3
3= Ky, + Ky, [AZE )]+ xgit H[AZ ()]

=
L]

We see that only h, is affected by the program options. The measure-
ment equation is icentical to Eq. (4,14) with h[&(tn), tn] defined by

Eq. (6.15) and the selected program option,

6.2 MEASUREMENT SIMULATION

Except for the elements of the state and measurement equations,
the measurement simulation is identical to the 1-g simulation develop-
ment described in Section 5.2 of Section 5. Table 6.4 contains a list
of the means and standard deviations for the state variables., These
values were used to construct the 10-element initial state vector _§_(to),
based on the specified program option. As was the case in Section 5,
the values are based on data from the Carousel VB system.

Table 6.5 contains a list of the standard deviations for the zero-

mean, gaussian white disturbance process w(t) and the zero-mean,
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guassian white, measurement noise sequence _n_)_(tn). As was the case

in Section 5, the standard deviations for the sensor parameter dis-
turbances are 10 percent of those listed in Table 6.4, Also, since the
same torque profile was used, the disturbance added each At measure-
ment cycle is given by Eq. (5.7) withi = 1,2, . . ., 10, The equations
of the sensor parameters, Euler angles, and measurements are repre-
sented by Eqgs. (5.9), (5.10), and (5.11), respectively, with the state
and measurement dynamic equations given ., Eqs. (6.14) and (6.15),

A measurement cycle of At = 0.04 second was used for the centri-
fuge simulation. This measurement cycle is identical to the opera-
tional measurement cycle used for the Carousel VB Inertial Measure-
ment Unit. The method of integrating the state and measurement
dynamics was 4th-order Runge-Kutta with a step-size of 0.01 second.

-4 rad/sec (see Section B, 2

Based on a nominal platform rate of 5.2 X 10
of Appendix B) it is implied that measurements were taken every 0,07
arc-minutes of platform angle. Based on a centrifuge rate of 3.85
rad/sec, it is implied that measurements were taken every 8.8 deg

of centrifuge angle. Figure 5.1 also represents the flow diagram

for the centrifuge measurement simulation program with the state and
measurement dynamic of Egs. (6.14) and (6.15), Since At = 0,04 secc-
ond, it is implied that the maximum number of mcasurements over the
torque profile would be 328,500. Fortunately, tne filter converged

in less thau 15,000 cycles, so that it was nof necessary to process

all of these measurements.
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6.3 FILTER ALGORITHM

Except for the elements of the state and measurement dynamic
equations, the filter algorithm is identical to the 1-g simulation devel-
opment given in Section 5.3 of Section 5. Since the state dynamic equa-
tion is an explicit function of time, it is implied that F and ® are func-
tions of time; therefore, the matrix differen.ial equation, Eq. (4.22),
should be used to obtain a solution of . As discussed in Section 4.4
of Section 4, only the elements of the last three rows of ® require a
solution via Eq. (4.22)., This implies a total of 30 differential equa-
tions., In the case of I', the adjoint matrix differential equation,

Eq. (4.27), requires the integration of 60 differential equations to
obtain @ from t, back to t,_y, as discussed in Section 4; then 60 zddi-
tional integrations are required to obtain ' from Eq. (4.26,, for a
total of 120 integrations. This is a formidable task just to transition
the "initial guess' of Q(0) forward in time. Since Q(0) is an adjustable
initial condition, it was decided to consider F constant over the

0.04 second measurement cycle and obtain I' by the power series
approximation of Eq. (4.29) with F evaluated at t=t,.

Another approach would be to consider F constant for the ¢
computation as wel!, then use the power series approximation of

Eq. (4.24), with F evaluated at t=t_., to obtain &, An evaluation of

n?
approximating both ® and T by the power series method is itnportant,
since, for the general calibration problem containing 63 states, we

are dealing with 189 integrations for @ and 3969 integrations for I

Therefore, the only significant difference in Figure 5.3 for the
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centrifuge simulation is that Block 10 contained two options for
obtaining @ and I'. One option obtained both by the power series
method with m=5, The second option obtained ¢ by a 4th-order
Runge-Kutta integration of 30 differential equations using a step-size
of 0.01 second, and then used the power series approximation to
obtain I',

The partial derivaiive matrices of F and H are contained in Section
C.2 of Appendix C. The construction of their elements is based on the
specified program option, As was the case for Section 5, P(0) was
assumed a diagonal matrix; Q(0) and R (1) were assumed diagonal
and stationary. The scaling for 5(0) and Q(0) was identical to
Eqs. (5.13) and (5.14), respectively, withi=1,2,., .., 10, The
scaling for R*(l) was identical to Eg. (5.15)., All the procedures and
equations for %*(N), AV(N), A(N), and %(N) are identical to those of
Section 5 with At = 0,04 second, an integration step-size of 0.01 sec-
ond, the dimensionality r2duced from 17 to 10, and the state and

measurement dynamics defined by Eqs. (6.14) and (6,15),

6.4 SIMULATION RESULTS

Before discussing the detailed final results of the centrifuge
simulation, the results obtained from some preliminary runs will be
given to show how some of the pﬁysical aspects of the problem and
the correclation data obtained from the simulations were used to
improve the estimates of the centrifuge calibrations. From Table 6.4,
we see that the initial values of @ and y are 2 few minutes of arc. To
simplify the notation, we will refer to this initial condition as the

= Y = 0 condition. /
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Table 6.6 shows the results of three simulation runs where the
only difference was the initial values assigned to a and Y. For the
a =Y =0 case, we see that the estimation error X (i.e., x - x) for all
the sensor coefficients except K37 appear to be quite small. In the
case of Ky, we are attempting to estimate a true value of x=3,554 pg/g3
and X=1,667 p.g/g3. Obviously, the estimate is very poor. Note,
however, that K3Z is a coefficient associated with the Z accelerometer,
and the Z ple‘ztform axis is vertically up at the start of the calibration.
Since the filtering time is only 5 minutes, we see¢ from the true values
of a, B, and y that the Z axis has only moved approximately 9 deg from
the vertical. This means that the Z accelerometer has sensed only the
local gravity value of 1-g, compared to the other platform axes which
have sensed a peak-to-peak acceleration of 20 g's. The K3Z coefficient
information is essentially ""buried' in the noise. To correct this physi-
cal situation, the initial condition of a was changed to -45 deg, which
places the Z axis 45 deg above the horizontal and permits the Z acceler-
ometer to sense a component of centrifuge acceleration. The results
of this simulation are in the @ = -45 Y = 0 column. We can now see the
significant improvement in the K3Z estimation error, from 1,667 to
0.017 ug/g3. An interesting comparison can also be made with the
K3Z correlation pattern for the two cases. The following correlation
pattern gives the sensor parameter that K3Z is correlated with and

the amount of correlation, p, for the two cases

181

3 i

L i SRR,




Sensor Parameter a = 0 Correlation a = -45 Correlation

DIX 0.45 0.063
a 0.50 0.23
Y 0.40 0.026

The correlation pattern cefinitely shows the estimates of K3Z should
be better with the Z axis 45 deg above the horizontal., Once again we
see a r~lationship between the correlation pattern, provided by the
off-diagonal P matrix terms, and the torque profile via platform
crientation.

Comparing the a = 0 toa= -45 Y = 0 case, we see that another
problem has developed. The estimate for Djy has degraded signifi-
cantly. A review of the !-g simulation results showed that the corre-
lation pattern (especially with a) and X improved tremendously when
Y = -45 deg. The results of the ¢ = -45 y = -45 column verify the 1-g
analysis and show that! i significant improvement in the DIX estimate
has occurred, along with a further improvement in the K3Z estimate.
The slight degradation of le is not significant, since approximately
260 seconds later inthe a= -45 Y = -45 run, X for le drops to
-0.78 pg/g and stays there; in other words, it takes a little longer
to converge the KiX estimate. Once again the correlation pattern of
DIX for all three cases shows the relative degradation or improvement

of the DIX estimate with respect to the platform orientation,
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a=0 a = -45 a = -45
Y=0 Y=0 Y = -45
Sensor Parameter Correlation Correlation Correlation
KZY 0.076 0.54 0.061
a 0,63 0.56 0.23

Based on the above, the two program options that contain DIX’ Basic
and Option 2, were run with the initial values of « and Y set to -45 deg.
In the case of Option 1, only the initial value of a was set to -45 deg to
permit recovery of the KSZ term,

Nothing has been said thus far about the initial state estimate

X - %X(0) for the centrifuge simulations. The initial estimates for all

the higher-order coefficients, state variables x_ through Xgr Were

5
always set equal to zero., Since we assume we know nothing about
these coefficients, zero is the logical choice. For the fixed and first-
the initial estimate

order coefficients, state variables x, through x

1 4’
of the scale factor was always set equal to 1,0 X 106 ng/g, and the
other three coefficients were varied by either 10 percent or 30 percent
of the respective Xo; (i=1,2,3) contained in Table 6.4. In the case

of the Euler angles, the 10-percent or 30-percent variations of Xo4

(i =10,11,12) were obviously applied about the new initial values of -45

deg, rather than X for those angles with the 45-deg offset. The differ-

ence in the results from the 10-percent and 30-percent simulations is so

insignificant that only the 30-percent results for the three program
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options will be presented. Selection of the 30-percent case is rather
conservative, since the initial estimates for the fixed and first-order
coefficients will normally be provided by the precentrifuge 1-g calibra-
ti.on; and as was shown in Section 5, even the 100-percent case con-
verged to within 30 percent. A worst case run was also made for the
centrifuge simulation, where all the coefficient initial estimates except
the scale factor and offset angles (@ = Y = -45 deg) were set to zero.

As discussed in the last section, there were two options avail-
able for computing & and I', The option that obtained both by the nower
series approximation is referred to as TOPT = 0, where TOPT stands
for transition option. The option that obtained & by integration and I
by the power scries approximation will be referred to as TOPT = 1,
Table 6.7 contains a comparison of the results of the two transition
options. Since the differences are so small, all the digits available
from the computer printout are provided to permit a complete compari-
son., The results show that assuming F to be constant over the .
0.04-second measurement intervai and computing ® and I'"from the
power series approximation with m =5 is a valid approximation,
Therefore, TOPT =0 was used for all the remaining simulation runs.
This result is encouraging, since the 63-state general calibration pro-
gram becomes much simpler if all the integrations associated with @
and I' can be eliminated. It should be noted that the approximation was
probably valid because of the short measurement cycle time; however,
for most missile applications, the measurement cycle time ranges
from 0.02 to 0.05 second in order to meet operational accuracy

requirements.
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Block 9 of Figure 5.3 shows that two options were available for
computing the F and H partials for the filter, Table 6.8 shows the
results of two simulation runs, whose only difference was that one was
based on the analytic partials of Appendix C and the other was based
on the numerical partial routine. It should be understood that no effort
was made to improve the results of the routine, such as adjusting the
incremental perturbation levels, since the basic purpose of the numeri-
cal partials was to provide a basis for comparison and checkout of the
hand calculated analytic partials, The results of the numerical partials
compare quite well with the analytic results, especially to one whec had
the ""pleasure'' of hand calculating the 162 partials of Appendix C. With
further refinements on the numerical partial routine, a inajor simpli-
fication of the 63-state calibration program could be achieved using
numerical partials.

The results of the 30-percent case for the Basic Option, Option 1,
and Option 2 are contained in Tables 6.9, 6.10, and 6.11, respectively.

Except for K;pyx in two program options, all the values of the estima-

tion error, X, are well within the error budget. The error budget

values for sz, K3Z’ and KIPX were obtained from the Central Iner-

tial Guidance Test Facility at Holloman AFB, since no values were i
defined for the Carousel VB error budget. The values for the above
accelerometer erros coefficients are nominal error values that are
representative of the quality of accelerometer used on the Carousel VB
platform. In the case of KIPX’ we see that the largest value of X was

obtained with Option 1, where the initial offset was a = -45 deg. For
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the Basic Option and Option 2, the initial offset was a = y = -45 deg.
We see that the value of X is improved for the Basic Option and within
the error budget for Option 2, Comparing the KIPX estimation error
values for the two transition options of Table 6.7, we see that the
approximation of @ is not responsible for the degradation of the KIPX
estimate. Table 6.6 shows significant differences in the Kipy value
of X for three different initial offset cases of the Basic Option. The
significant improvement of KIPX for the a = -45 y = 0 case appears
to conflict with the results of the 30-percent case, where the worst

value of X for K x Was obtained with Option 1, where a = -45 deg

1P
and y = 0 deg. The a= -45 y = -45 and a = -45 y = 0 cases were
both run for a total filtering time of 10 minutes. The results at the
10-minute point were identical to those shown in Tables 6.9 and 6,10
for the Basic Option and Option 1 (i.e., X = 0.11720 }.Lg/g2 and

X = 0,18937 pg/gz, respectively)., The interesting point is that at the
5-minute point, for the @ = -45 y = 0 case of Table 6.6, the correla-
tion coefficients of KIPX with DIX’ sz, K3‘:, a, and 3 were 2 to 3
orders of magnitude lower than those values for the o = 0 y = 0 and
a=-45 y=-45cases at the 5 minute point. Also, the correlation
pattern was improved for the 30-percent Option 2 case, as compared

to the 30-percent Basic Option, with respectto K., and K

0X 1X’
respectively. It now becomes apparent that KIPX is extremely sensi-
tive to the platiorm orientation and to the other accelerometer param-

eters along the x axis; in other words, the estimate is improved when

coupled with a bias term (Kox), then with a scale factor term (le).
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Now, since K is a cross-axis term, it is not surprising that it is

IPX
highly sensitive to the platform orientation, Also, it is not surprising
that the correlation pattern is improved when compared to a constant
bias term, which should be easily distinguished from a second-order
term when sinusoidal acceleration is applied. Therefore, the conclu-
sion is that a more favorable orientation that decouples KIPX from the

other sensor parameters is required for a good estimate of the KIPX
{

coefficient,
The results of the worst or 100-percent case using the Basic
Option are contained in Table 6.12. Considering that the filtering
time was only increased by 5 minutes over the 30-percent case, the
results are truly incredible. Four of seven coefficients are already
within the error budget, and the remaining three coefficients are

-

- extremely close,

Comparing the results of X or ¢ in Tables 6.9 through 6.12, we

see that the relative difference between X and ¢ is larger for the

centrifuge simulation than for the 1-g simulation. In the 1-g simula-
tion, the values of X, which represent the state perturbations, were
about the same magnitude or smaller than the standard deviations, o,
of the filtering error., Table 6.13 gives a comparison of the 1-g and
centrifuge simulation filter performance for those fixed and first-
order coefficients common to both simulations, In order to have a
common base for comparison, the results are compared for an equal
value of N measurement cycles, rather than an equal time of filtering.

In other words, we are comparing the filter performance based on the
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results after processing the same number of measurements: 6200 in
the 30-percent case and 7600 in the 100-percent case., The results of

Table 6.13 show that even though the relative difference between X and

o is larger for the centrifuge simulation, the values of X (state
perturbations) for the centrifuge simulation are smaller than those of
!1-g simulation in the majority of cases. Comparing the o values of
the centrifuge versus the 1-g simulation, we now see that the filter
performance was vastly improved for the centrifuge simulation. In
fact, the performance was so improved that the value of Q was main-
tained in order to prevent the filter gain from approaching zero and
thereby decoupling the filtered estimates from the measurement data
as discussed in Section 5,3 of Section 5

The results of the centrifuge simulation have again verified that
the linearization is valid, that the effect of the Av approximation is
minimal, and that the computation of the filter can be simplified by
assuming F is constant over the measurement interval and thereby
® can be obtained via the power series approximation, Except for
KIPX’ the correlation data for the centrifuge simulation showed that
there is no observability problem for those coefficients considered for

the centrifuge simulation, This concludes the centrifuge simulation

results.




SECTION 7

SUMMARY AND RECOMMENDATIONS FOR FUTURE STUDY

The objective of the report was to investigate a data reduction
technique that obtains estimates of inertial sensor error model coeffi-
cients from a laboratory calibration of an Inertial Navigation System.
The results of Sections 5 and 6 reveal that this objective has been
achieved; however, throughout the preceding sections, a number of
simplifying model assumptions were made based on calculations of
and/or assumptions made concerning sensor and platform design char-
acteristics, assumntions of the centrifuge performance and dynamic
environment, and assumptions of the statistical model used for the
sensor parameters, In this section, we will briefly review these
simplifications and identify those areas where future study is required.

In Section 2, we specified that the performance model terms
were limited to those associated with an acceleration environment. As
mentioned in Section 3, a component of centrifuge rcete will be sensed
by the platform sersors based on the magnitude of the misalignment
between the two spindle axes and/or variations in either the main or
CRP drive system. Measurement data taken thus far on the centrifuge
environment shows that an expansion of the sensor performance models
is not necessary; however, since this assumption is based on the mag-

nitude ~f centrifuge rate applied to the sensors and their sensitivity to

rate, an evaluation of this assumption must be made for each platform




tested. Specific assumptions of the gyro and accelerometer

sensors were

(a) The gyro rotor spins at a constant speed about an axis
of symmetry

(b) The center of mass of the gyro rotor coincides with
that of the gyro element,

(c) Th

(¢

gyro rotor and gimbal support structure are rigid.

(d) The gyro precession angle A is maintained small by

g
the platform stabilization loop.

(e) The accelerometer output axis angle AO is maintained 1
at null by the capture loop.
(f) The gyro and accelerometer transient response can be
neglected based on time constants of 2 milliseconds and
0.3 milliseconrd, respectively.
Assumptions (a) through (e) will be valid in most instances simply
because these are closely controllea design specifications for all plat-

form sensors used in inertial navigation applications. Assumption (f)

is obviously related to the measurement cycle time of the platform. In
the simulations, the assumption is valid, since the measurement cycle
time is much larger than the normal criterion that the transient
response is negligible after three time constants (i.e., a time period

equal to three times the time constant)., This is also an area that is

closely controlled by design specifications with respect to the platform




operational measurement cycle time. The following assumptions were
made concerning the platform performance model:
() The platform gimbals are rigid.
(b) The 2-Hz frequency of the centrifuge sinusoidal accelera-
tion is within the system-gimbal-servo response.
{c) The servo error is a deterministic quantity,
Assumption (a) is also related to the amount of centrifuge rate applied

to the platform, since the rigidity of the gimbals is a direct function

of the rate environment in which the platform was designed to operate.
Assumption (b) is valid in most instances because of the design trade- |
off that must be made between the stabilization loop gain and bandwidth,

1 Normal platform bandwidths range from 5 to 20 Hz, depending on the
application, Assumption (c) has been found from experience to be quite

valid based on servo tests and analyses conducted on numerous plat- |'

forms., Therefore, it is concluded that, except for those involved with

the centrifuge rate effect, the assumptions of Section 2 should be valid
ﬂ in most instances of platform testing on the centrifuge. In the case of
the centrifuge rate effect, it is recommended that additional simula-
tions be conducted based on actual centrifuge and platform performance
data to determine what modifications are required for the sensor and
{ platform performance models.

In Section 3, it was assumed that the inertial frame was non-
rotating with respect to the fixed stars and that any deviations of the

local gravity vector caused by mass anomalies were negligible, Based

on a calibration time of approximately 4 hours, the inertial frame

assumption is obviously valid. The mass anomaly contribution has
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been verified, by measurements at the centrifuge test site, to be
negligible. Specific assumptions concerning the centrifuge were
(a) The spindle axes tilts were assumed to be constant
small angles.
(b) The dynamic change in the centrifuge radius was
assumed to be constant at a stabilized g-level.
(c) The misalignments and centrifuge rate variations
were assumed to be measurable quanities; hence, the
coordinate transformations were assumed to contain
deterministic elements,
(d) The platform axes were assumed defined by the physical
case input axes of the sensors,
Asssumptions (a) through (c) are based on preliminary data obtained
from the initial evaluations of the centrifuge. It is important that
additional performance data be obtained and evaluated to determine if
the dynamic model and coordinate transformations defined in Section 3
are valid. It was mentioned in Section 3, that if the measurement
accuracy of these centrifuge parameters is not sufficient to accurately
account for the centrifuge rate effect or to determine the applied
acceleration, then these parameters must be estimated by the filtering
process, This assumes tnat the basic form of the dynamic model of
the centrifuge is known, and that specific parameters in that model
require to be identified or estimated. Therefore, it is extremely
important to continue an evaluation of the centrifuge performance data

to verify or modify the assumed models and transformations of
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Section 3. .Assumption (d) is quite common for platform performance
models, since any error in the mounting of the sensors is included in
the sensor misalignment angles. In the case of the Group 2 terms of
Eq. (3.25), these also require additional evaluations at the higher
centrifuge g-levels to determine if their contribution can be neglected
without affecting the accuracy of the error model coefficient estimates.
Iin Sections 4 through 6, the following three major assumptions
were made:
(a) The statistical model assumed for the sensor parameters
was a random constant in combination with a random walk.
(b) The operating random changes of the sensor parameters
were assumed to be zero mean, gaussian white, distur-
bance processes,
(c) The disturbance process was assumed to be independent of
the initial condition repeatability sources,
Section 4.3 of Section 4 contains an extensive discussion concerning
these assumptions. Unfortunately, nothing further can be added here,
except that, if additional sensor data reveals that the statistical model
should incorporate correlation, then the simplification proposed by
Bucy and Joseph, cescribed at the end of Section 4.4, becomes an
extremely important result, The alternative of adjusting the variance
rather than augmenting the state vector would be a welcome
simplification,
All the quest.ons concerning linearization, Av approximation,

observability, and simplifying the computation of & and I" were
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answered by the simulation results of Sections 5 and 6. Areas
requiring further study are the effect of modeling errors in the pre-
dicted filter loops; optimization of the filter performance with respect
to Q(0), 5(0), and R*(1); and optimization of the torque profile for the
1-g calibration. The correlation patterns, provided by the off-diagonal
terms of the filtering error covariance matrix, are an excellent source
of information for generating an optimal torque profile. It is believed,
based on the simulation results, that the correlation patterns will show
that there exist '"observanility regions' where subsets of the model
coefficient estimates are ''optimal,' based on the geometry of the 1-g
calibration problem. Therefore, an optimal torque profile would con-
sist of a prespecified se: of commands that orient the platform axes
within these regions in the minimum time. In the casc of the centri-
fuge calibration, since the filter convergence is so rapid, it appears
that an optimal torque program would consist of a prespecified set of
offset Euler angles to recover the various types of model coefficients,

This concludes the summary and the recommendations for further

study,
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APPENDIX A

KINEMATIC ACCELERATION OF THE SENSOR FRAME

The kinematic acceleration of the sensor frame with respect to
the inertial reference frame is developed using the basic equations of
Coriolis and the equations for differentiating a vector R.

The equations for differentiation of a vector R are as follows:

R=1 R+w XR (A.1)
[ 1] [ ] [ ]
R=1 Re2@xt)R+5 xR
tu X (@ XR) (A.2)

where I

R,R - are the scalar velocity and scalar acceleration of R

angular velocity of the vector R and !

——
It

unit vector in the direction of R

The first term of Eq. (A.1) is the rate of change of the length of
vector R, and the second term (whose direction is perpendicular to R)
gives the rate of change of R due to the rotation @ - The first term
of Eq. (A.2) is the second rate of change of the length of vector R

(i.e., linear acceleration along R); the second and third termes are

both tangential accelerations; and the last term is the centripetal




acceleration resulting from the rotation of R and is directed toward

the center of rotation.

The equations of Coriolis for rotating bodies are as follows [7]):

RE - &P 40, xR.. (A.3)
=17 = R i

RE -RI +8K xR.. + 20, xR,
=iy =1 =m =i =il =Y
g X (@, X _B_ij) (A. 4)

Equation (A. 3) shows that the rate of change of a vector Bij’ as viewed |

from a reference frame k, is equal to the rate of change of the vector
Bij’ as seen from a moving frame i, plus the angular velocity of the
moving frame, with respect to the reference frame C2PD crossed with

the original vector. Equation (A. 4) gives the kinematic acceleration

e —————

of frame j with respect to frame i, as viewed from reference frame k.
The first term of Eq. (A.4) is generally referred to as the ''linear"
acceleration term, as seen from the moving frame i, even though it
may contain the tangential and centripetal components defined in

Eq. (A.2). The second term of Eq. (A.4) is the tangential accelera-
tion due to the angular acceleration of the moving frame, with respect
to the reference frame; the third term is the Coriolis acceleration,
which is generated by a change in the direction oféij, relative to the
moving frame i, plus a portion of the rate of change of the velocity

Dy X -R—ij’ due to a change in magnitude or direction of the position

vector Bij' The fourth term is the centripetal acceleration resulting




from the rotation of the moving frame with respect to the reference
frame.

The basic coordinate frames connecting the inertial frame to
the sensor frame are shown in the vector map of Figure A.1. All the
coordinate frames from inertial space to the sensor axes are defined
in Section 3. The basic coordinate frames are the major transforma-
tions linking inertial space to the sensor axes. The intermediate
transformations that are excluded from the basic frames are essen-
tially those frames that account for misalignments of the physical
members of the centrifuge, su<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>